Displaying similar documents to “A finite element method for stiffened plates”

A finite element method for stiffened plates

Ricardo Durán, Rodolfo Rodríguez, Frank Sanhueza (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The aim of this paper is to analyze a low order finite element method for a stiffened plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it decouples into two problems, one for the in-plane plate deformation and the other for the bending of the plate. The analysis and discretization of the first one is straightforward. The second one is shown...

Numerical Analysis of a Relaxed Variational Model of Hysteresis in Two-Phase Solids

Carsten Carstensen, Petr Plecháč (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. error estimates motivate an adaptive mesh-refining algorithm for efficient discretization....

Existence, and error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows

Marco Picasso, Jacques Rappaz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin Least Square (GLS) method are studied for solving this problem. Existence and error estimates are established using a Newton-chord fixed point theorem, error estimates are also derived. An...

Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem

Mauricio A. Barrientos, Gabriel N. Gatica, Rodolfo Rodríguez, Marcela E. Torrejón (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an , which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables. Spectral convergence...

A Reduced Basis Enrichment for the eXtended Finite Element Method

E. Chahine, P. Laborde, Y. Renard (2009)

Mathematical Modelling of Natural Phenomena

Similarity:

This paper is devoted to the introduction of a new variant of the extended finite element method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result of quasi-optimal error estimate and some computational tests including a comparison with some other...

An error analysis for dynamic viscoelastic problems

J. R. Fernández, D. Santamarina (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:


In this paper, a dynamic viscoelastic problem is numerically studied. The variational problem is written in terms of the velocity field and it leads to a parabolic linear variational equation. A fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize time derivatives. An error estimates result is recalled, from which the linear convergence is derived under suitable regularity conditions. Then, an error...