Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 35, Issue: 5, page 879-897
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topPicasso, Marco, and Rappaz, Jacques. "Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows." ESAIM: Mathematical Modelling and Numerical Analysis 35.5 (2010): 879-897. <http://eudml.org/doc/197557>.
@article{Picasso2010,
abstract = {
In this paper, a
nonlinear problem corresponding to a simplified Oldroyd-B model
without convective terms is considered. Assuming the domain to be a convex
polygon, existence of a solution
is proved for small relaxation times.
Continuous piecewise linear finite elements together with
a Galerkin Least Square (GLS) method are studied for solving this problem.
Existence and a priori error estimates
are established using a Newton-chord fixed point theorem,
a posteriori error estimates are also derived.
An Elastic Viscous Split Stress (EVSS) scheme related to the GLS method
is introduced. Numerical results confirm the theoretical predictions.
},
author = {Picasso, Marco, Rappaz, Jacques},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Viscoelastic fluids; Galerkin Least Square finite elements.; viscoelastic fluids; simplified Oldroyd-B model; convex polygon; existence of solution; small relaxation times; continuous piecewise linear finite elements; Galerkin least square method; a priori error estimates; Newton-chord fixed point theorem; a posteriori error estimates; elastic viscous split stress scheme},
language = {eng},
month = {3},
number = {5},
pages = {879-897},
publisher = {EDP Sciences},
title = {Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows},
url = {http://eudml.org/doc/197557},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Picasso, Marco
AU - Rappaz, Jacques
TI - Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 5
SP - 879
EP - 897
AB -
In this paper, a
nonlinear problem corresponding to a simplified Oldroyd-B model
without convective terms is considered. Assuming the domain to be a convex
polygon, existence of a solution
is proved for small relaxation times.
Continuous piecewise linear finite elements together with
a Galerkin Least Square (GLS) method are studied for solving this problem.
Existence and a priori error estimates
are established using a Newton-chord fixed point theorem,
a posteriori error estimates are also derived.
An Elastic Viscous Split Stress (EVSS) scheme related to the GLS method
is introduced. Numerical results confirm the theoretical predictions.
LA - eng
KW - Viscoelastic fluids; Galerkin Least Square finite elements.; viscoelastic fluids; simplified Oldroyd-B model; convex polygon; existence of solution; small relaxation times; continuous piecewise linear finite elements; Galerkin least square method; a priori error estimates; Newton-chord fixed point theorem; a posteriori error estimates; elastic viscous split stress scheme
UR - http://eudml.org/doc/197557
ER -
References
top- F.P.T. Baaijens, Mixed finite element methods for viscoelastic flow analysis: a review. J. Non-Newtonian Fluid Mech.79 (1998) 361-385.
- I. Babuska, R. Duran, and R. Rodriguez, Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal.29 (1992) 947-964.
- J. Baranger and H. El-Amri, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens. RAIRO Modél. Math. Anal. Numér.25 (1991) 31-48.
- J. Baranger and D. Sandri, Finite element approximation of viscoelastic fluid flow. Numer. Math.63 (1992) 13-27.
- M. Behr, L. Franca, and T. Tezduyar, Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput. Methods Appl. Mech. Engrg.104 (1993) 31-48.
- J. Bonvin, M. Picasso and R. Stenberg, GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows. Comput. Methods Appl. Mech. Engrg.190 (2001) 3893-3914.
- J.C. Bonvin, Numerical simulation of viscoelastic fluids with mesoscopic models. Ph.D. thesis, Département de Mathématiques, École Polytechnique Fédérale de Lausanne (2000).
- J.C. Bonvin and M. Picasso, Variance reduction methods for CONNFFESSIT-like simulations. J. Non-Newtonian Fluid Mech.84 (1999) 191-215.
- G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems, in Handbook of Numerical Analysis. Vol. V: Techniques of Scientific Computing (Part 2), P.G. Ciarlet and J.L. Lions, Eds., Elsevier, Amsterdam (1997) 487-637.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
- P. Clément, Approximation by finite elements using local regularization. RAIRO Anal. Numér.8 (1975) 77-84.
- M. Fortin, R. Guénette, and R. Pierre, Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Engrg.143 (1997) 79-95.
- M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Methods Appl. Mech. Engrg.73 (1989) 341-350.
- L. Franca, S. Frey, and T.J.R. Hughes, Stabilized finite element methods: Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg.95 (1992) 253-276.
- L. Franca and R. Stenberg, Error analysis of some GLS methods for elasticity equations. SIAM J. Numer. Anal.28 (1991) 1680-1697.
- X. Gallez, P. Halin, G. Lielens, R. Keunings, and V. Legat, The adaptative Lagrangian particle method for macroscopic and micro-macro computations of time-dependent viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 180 (199) 345-364.
- V. Girault and L.R. Scott, Analysis of a 2nd grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl.78 (1999) 981-1011.
- P. Grisvard, Elliptic Problems in Non Smooth Domains. Pitman, Boston (1985).
- C. Guillopé and J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal.15 (1990) 849-869.
- M.A. Hulsen, A.P.G. van Heel, and B.H.A.A. van den Brule, Simulation of viscoelastic clows using Brownian configuration Fields. J. Non-Newtonian Fluid Mech.70 (1997) 79-101.
- K. Najib and D. Sandri, On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow. Numer. Math.72 (1995) 223-238.
- L.M. Quinzani, R.C. Armstrong, and R.A. Brown, Birefringence and Laser-Doppler velocimetry studies of viscoelastic flow through a planar contraction. J. Non-Newtonian Fluid Mech.52 (1994) 1-36.
- M. Renardy, Existence of slow steady flows of viscoelastic fluids with differential constitutive equations. Z. Angew. Math. Mech.65 (1985) 449-451.
- V. Ruas, Finite element methods for the three-field stokes system. RAIRO Modél. Math. Anal. Numér.30 (1996) 489-525.
- D. Sandri, Analysis of a three-fields approximation of the stokes problem. RAIRO Modél. Math. Anal. Numér.27 (1993) 817-841.
- A. Sequeira and M. Baia, A finite element approximation for the steady solution of a second-grade fluid model. J. Comput. Appl. Math.111 (1999) 281-295.
- R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam, New York, Oxford (1984).
- R. Verfürth, A posteriori error estimators for the Stokes equations. Numer. Math.55 (1989) 309-325.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.