Displaying similar documents to “On Sums of Squares in Q 1 2 ( X ) etc”

Exceptional sets in Waring's problem: two squares and s biquadrates

Lilu Zhao (2014)

Acta Arithmetica

Similarity:

Let R s ( n ) denote the number of representations of the positive number n as the sum of two squares and s biquadrates. When s = 3 or 4, it is established that the anticipated asymptotic formula for R s ( n ) holds for all n X with at most O ( X ( 9 - 2 s ) / 8 + ε ) exceptions.

Equivalence classes of Latin squares and nets in P 2

Corey Dunn, Matthew Miller, Max Wakefield, Sebastian Zwicknagl (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The fundamental combinatorial structure of a net in P 2 is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in P 2 . Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in P 2 are empty to show some non-existence results for 4-nets in P 2 .

On the k -polygonal numbers and the mean value of Dedekind sums

Jing Guo, Xiaoxue Li (2016)

Czechoslovak Mathematical Journal

Similarity:

For any positive integer k 3 , it is easy to prove that the k -polygonal numbers are a n ( k ) = ( 2 n + n ( n - 1 ) ( k - 2 ) ) / 2 . The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet L -functions and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums S ( a n ( k ) a ¯ m ( k ) , p ) for k -polygonal numbers with 1 m , n p - 1 , and give an interesting computational formula for it.

A note on signs of Kloosterman sums

Kaisa Matomäki (2011)

Bulletin de la Société Mathématique de France

Similarity:

We prove that the sign of Kloosterman sums Kl ( 1 , 1 ; n ) changes infinitely often as n runs through the square-free numbers with at most 15 prime factors. This improves on a previous result by Sivak-Fischler who obtained 18 instead of 15. Our improvement comes from introducing an elementary inequality which gives lower and upper bounds for the dot product of two sequences whose individual distributions are known.

Waring's number for large subgroups of ℤ*ₚ*

Todd Cochrane, Derrick Hart, Christopher Pinner, Craig Spencer (2014)

Acta Arithmetica

Similarity:

Let p be a prime, ℤₚ be the finite field in p elements, k be a positive integer, and A be the multiplicative subgroup of nonzero kth powers in ℤₚ. The goal of this paper is to determine, for a given positive integer s, a value tₛ such that if |A| ≫ tₛ then every element of ℤₚ is a sum of s kth powers. We obtain t = p 22 / 39 + ϵ , t = p 15 / 29 + ϵ and for s ≥ 6, t = p ( 9 s + 45 ) / ( 29 s + 33 ) + ϵ . For s ≥ 24 further improvements are made, such as t 32 = p 5 / 16 + ϵ and t 128 = p 1 / 4 .

Proof of a conjectured three-valued family of Weil sums of binomials

Daniel J. Katz, Philippe Langevin (2015)

Acta Arithmetica

Similarity:

We consider Weil sums of binomials of the form W F , d ( a ) = x F ψ ( x d - a x ) , where F is a finite field, ψ: F → ℂ is the canonical additive character, g c d ( d , | F × | ) = 1 , and a F × . If we fix F and d, and examine the values of W F , d ( a ) as a runs through F × , we always obtain at least three distinct values unless d is degenerate (a power of the characteristic of F modulo | F × | ). Choices of F and d for which we obtain only three values are quite rare and desirable in a wide variety of applications. We show that if F is a field of order 3ⁿ with n...

Sum of squares and the Łojasiewicz exponent at infinity

Krzysztof Kurdyka, Beata Osińska-Ulrych, Grzegorz Skalski, Stanisław Spodzieja (2014)

Annales Polonici Mathematici

Similarity:

Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations h ( x ) = = h r ( x ) = 0 and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then f | V extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial h ( x ) = i = 1 r h ² i ( x ) σ i ( x ) , where σ i are sums of squares of polynomials of degree at most p, such that f(x) + h(x) >...

Some new sums related to D. H. Lehmer problem

Han Zhang, Wenpeng Zhang (2015)

Czechoslovak Mathematical Journal

Similarity:

About Lehmer’s number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let p be a prime, and let N ( k ; p ) denote the number of all 1 a i p - 1 such that a 1 a 2 a k 1 mod p and 2 a i + a ¯ i + 1 , i = 1 , 2 , , k . The main purpose of this paper is using the analytic method, the estimate for character sums and trigonometric sums to study the asymptotic properties of the counting function N ( k ; p ) , and give an interesting asymptotic formula...

A generalization of a theorem of Erdős-Rényi to m-fold sums and differences

Kathryn E. Hare, Shuntaro Yamagishi (2014)

Acta Arithmetica

Similarity:

Let m ≥ 2 be a positive integer. Given a set E(ω) ⊆ ℕ we define r N ( m ) ( ω ) to be the number of ways to represent N ∈ ℤ as a combination of sums and differences of m distinct elements of E(ω). In this paper, we prove the existence of a “thick” set E(ω) and a positive constant K such that r N ( m ) ( ω ) < K for all N ∈ ℤ. This is a generalization of a known theorem by Erdős and Rényi. We also apply our results to harmonic analysis, where we prove the existence of certain thin sets.