The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur l’existence d’un point rationnel d’ordre n sur une courbe elliptique”

De beaux groupes

Thomas Blossier, Amador Martin-Pizarro (2014)

Confluentes Mathematici

Similarity:

Dans une belle paire ( M , E ) de modèles d’une théorie stable T ayant élimination des imaginaires sans la propriété de recouvrement fini, tout groupe définissable se projette, à isogénie près, sur les points E -rationnels d’un groupe définissable dans le réduit à paramètres dans E . Le noyau de cette projection est un groupe définissable dans le réduit. Un groupe interprétable dans une paire ( K , F ) de corps algébriquement clos où K est une extension propre de F est, à isogénie près, l’extension...

Une construction de

Pierre Colmez (2012)

Rendiconti del Seminario Matematico della Università di Padova

Similarity:

Points rationnels sur les quotients d’Atkin-Lehner de courbes de Shimura de discriminant p q

Florence Gillibert (2013)

Annales de l’institut Fourier

Similarity:

Soient p et q deux nombres premiers distincts et X p q / w q le quotient de la courbe de Shimura de discriminant p q par l’involution d’Atkin-Lehner w q . Nous décrivons un moyen permettant de vérifier un critère de Parent et Yafaev en grande généralité pour prouver que si p et q satisfont des conditions de congruence explicites, connues comme les conditions du cas non ramifié de Ogg, et si p est assez grand par rapport à q , alors le quotient X p q / w q n’a pas de point rationnel non spécial.

Sous-groupes H -loxodromiques

Antonin Guilloux (2011)

Bulletin de la Société Mathématique de France

Similarity:

On considère une extension finie k de p , avec p un nombre premier, H un sous-groupe d’indice fini de k * et le groupe SL ( n , k ) . Nous montrons que SL ( n , k ) admet un sous-groupe p -Zariski-dense dont toutes les matrices ont leur spectre inclus dans H si et seulement si soit - 1 est dans le sous-groupe H , soit n n’est pas congru à 2 modulo 4.