The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Un q -analogue du Théorème de Fukazawa-Gel’fond-Gramain”

Sous-groupes H -loxodromiques

Antonin Guilloux (2011)

Bulletin de la Société Mathématique de France

Similarity:

On considère une extension finie k de p , avec p un nombre premier, H un sous-groupe d’indice fini de k * et le groupe SL ( n , k ) . Nous montrons que SL ( n , k ) admet un sous-groupe p -Zariski-dense dont toutes les matrices ont leur spectre inclus dans H si et seulement si soit - 1 est dans le sous-groupe H , soit n n’est pas congru à 2 modulo 4.

Une construction de

Pierre Colmez (2012)

Rendiconti del Seminario Matematico della Università di Padova

Similarity:

Propriétés (Q) et (C). Variété commutante

Jean-Yves Charbonnel (2004)

Bulletin de la Société Mathématique de France

Similarity:

Soient X une variété algébrique complexe, lisse, irréductible, E et F deux espaces vectoriels complexes de dimension finie et μ un morphisme de X dans l’espace Lin ( E , F ) des applications linéaires de E dans F . Pour x X , on note E ( x ) et x · E le noyau et l’image de μ ( x ) , μ ¯ x le morphisme de X dans Lin ( E ( x ) , F / ( x · E ) ) qui associe à y l’application linéaire v μ ( y ) ( v ) + x · E . Soit i μ la dimension minimale de E ( x ) . On dit que μ asi i μ ¯ x est inférieur à i μ . Soient F * le dual de F , S ( F ) l’algèbre symétrique de F , μ l’idéal de 𝒪 X S ( F ) engendré par les fonctions...

Sur les orbites d’un sous-groupe sphérique dans la variété des drapeaux

Nicolas Ressayre (2004)

Bulletin de la Société Mathématique de France

Similarity:

Soient G un groupe algébrique complexe réductif et connexe, B un sous-groupe de Borel de G et H un sous-groupe sphérique de G . Soit X un plongement G × G -équivariant de G . Nous savons que B × H n’a qu’un nombre fini d’orbites dans G  ; nous montrons qu’il n’en a qu’un nombre fini dans X . Soit V ¯ l’adhérence dans X d’une orbite de B × H dans G et 𝒪 ¯ l’adhérence d’une orbite de G × G dans X . Si X est toroïdal, nous montrons que l’intersection V ¯ 𝒪 ¯ est propre dans X et la décrivons ensemblistement. Si de plus...