Displaying similar documents to “Truncated Infinitesimal Shifts, Spectral Operators and Quantized Universality of the Riemann Zeta Function”

The size of the Lerch zeta-function at places symmetric with respect to the line ( s ) = 1 / 2

Ramūnas Garunkštis, Andrius Grigutis (2019)

Czechoslovak Mathematical Journal

Similarity:

Let ζ ( s ) be the Riemann zeta-function. If t 6 . 8 and σ > 1 / 2 , then it is known that the inequality | ζ ( 1 - s ) | > | ζ ( s ) | is valid except at the zeros of ζ ( s ) . Here we investigate the Lerch zeta-function L ( λ , α , s ) which usually has many zeros off the critical line and it is expected that these zeros are asymmetrically distributed with respect to the critical line. However, for equal parameters λ = α it is still possible to obtain a certain version of the inequality | L ( λ , λ , 1 - s ¯ ) | > | L ( λ , λ , s ) | .

Some infinite sums identities

Meher Jaban, Sinha Sneh Bala (2015)

Czechoslovak Mathematical Journal

Similarity:

We find the sum of series of the form i = 1 f ( i ) i r for some special functions f . The above series is a generalization of the Riemann zeta function. In particular, we take f as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező’s paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of π .

Dirichlet series induced by the Riemann zeta-function

Jun-ichi Tanaka (2008)

Studia Mathematica

Similarity:

The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on ω , the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form ( a p , s ) = p ( 1 - a p p - s ) - 1 for a p in ω . Among other things, using the Haar measure on ω for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.

Lower bounds of discrete moments of the derivatives of the Riemann zeta-function on the critical line

Thomas Christ, Justas Kalpokas (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We establish unconditional lower bounds for certain discrete moments of the Riemann zeta-function and its derivatives on the critical line. We use these discrete moments to give unconditional lower bounds for the continuous moments I k , l ( T ) = 0 T | ζ ( l ) ( 1 2 + i t ) | 2 k d t , where l is a non-negative integer and k 1 a rational number. In particular, these lower bounds are of the expected order of magnitude for I k , l ( T ) .

On Popov's explicit formula and the Davenport expansion

Quan Yang, Jay Mehta, Shigeru Kanemitsu (2023)

Czechoslovak Mathematical Journal

Similarity:

We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function a n with the periodic Bernoulli polynomial weight B ¯ ϰ ( n x ) and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order 0 or 1 gives the well-known explicit formula for respectively...