On the total curvature of surfaces in
Peter Wintgen (1978)
Colloquium Mathematicae
Similarity:
Peter Wintgen (1978)
Colloquium Mathematicae
Similarity:
Steffen Winter
Similarity:
Curvature measures are an important tool in geometric measure theory and other fields of mathematics for describing the geometry of sets in Euclidean space. But the ’classical’ concepts of curvature are not directly applicable to fractal sets. We try to bridge this gap between geometric measure theory and fractal geometry by introducing a notion of curvature for fractals. For compact sets (e.g. fractals), for which classical geometric characteristics such as curvatures or Euler characteristic...
Jerrard, Robert L., Didier Smets (2015)
Journal of the European Mathematical Society
Similarity:
We propose a weak formulation for the binormal curvature flow of curves in . This formulation is sufficiently broad to consider integral currents as initial data, and sufficiently strong for the weak-strong uniqueness property to hold, as long as self-intersections do not occur. We also prove a global existence theorem in that framework.
Sebastian Scholtes (2012)
Fundamenta Mathematicae
Similarity:
We investigate tangential regularity properties of sets of fractal dimension, whose inverse thickness or integral Menger curvature energies are bounded. For the most prominent of these energies, the integral Menger curvature , where κ(x,y,z) is the inverse circumradius of the triangle defined by x,y and z, we find that for p ≥ 3α implies the existence of a weak approximate α-tangent at every point of the set, if some mild density properties hold. This includes the scale invariant...
Steffen Winter (2011)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In some recent work, fractal curvatures and fractal curvature measures , , have been determined for all self-similar sets in , for which the parallel neighborhoods satisfy a certain regularity condition and a certain rather technical curvature bound. The regularity condition is conjectured to be always satisfied, while the curvature bound has recently been shown to fail in some concrete examples. As a step towards a better understanding of its meaning, we discuss several equivalent...
Xu-Jia Wang (2014)
Journal of the European Mathematical Society
Similarity:
The convexity of level sets of solutions to the mean curvature equation is a long standing open problem. In this paper we give a counterexample to it.
P. J. De Smet, F. Dillen, Leopold C. A. Verstraelen, L. Vrancken (1999)
Archivum Mathematicum
Similarity:
We obtain a pointwise inequality valid for all submanifolds of all real space forms with and with codimension two, relating its main scalar invariants, namely, its scalar curvature from the intrinsic geometry of , and its squared mean curvature and its scalar normal curvature from the extrinsic geometry of in .
Atsushi Imiya (2013)
Actes des rencontres du CIRM
Similarity:
We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.
Václav Kůs, Domingo Morales, Jitka Hrabáková, Iva Frýdlová (2018)
Kybernetika
Similarity:
The paper deals with sufficient conditions for the existence of general approximate minimum distance estimator (AMDE) of a probability density function on the real line. It shows that the AMDE always exists when the bounded -divergence, Kolmogorov, Lévy, Cramér, or discrepancy distance is used. Consequently, consistency rate in any bounded -divergence is established for Kolmogorov, Lévy, and discrepancy estimators under the condition that the degree of variations of the corresponding...
Eduardo H. A. Gonzales, Umberto Massari, Italo Tamanini (1993)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
The existence of a singular curve in is proven, whose curvature can be extended to an function. The curve is the boundary of a two dimensional set, minimizing the length plus the integral over the set of the extension of the curvature. The existence of such a curve was conjectured by E. De Giorgi, during a conference held in Trento in July 1992.