Displaying similar documents to “The factorization of f ( x ) x n + g ( x ) with f ( x ) monic and of degree 2 .”

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈...

The algebra of polynomials on the space of ultradifferentiable functions

Katarzyna Grasela (2010)

Banach Center Publications

Similarity:

We consider the space of ultradifferentiable functions with compact supports and the space of polynomials on . A description of the space ( ) of polynomial ultradistributions as a locally convex direct sum is given.

Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials

Didier D'Acunto, Krzysztof Kurdyka (2005)

Annales Polonici Mathematici

Similarity:

Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that | f | C | f | ϱ in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than 1 - R ( n , d ) - 1 with R ( n , d ) = d ( 3 d - 3 ) n - 1 .

The norm of the polynomial truncation operator on the unit disk and on [-1,1]

Tamás Erdélyi (2001)

Colloquium Mathematicae

Similarity:

Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ₙ (resp. c ) the set of all polynomials of degree at most n with real (resp. complex) coefficients. We define the truncation operators Sₙ for polynomials P c of the form P ( z ) : = j = 0 n a j z j , a j C , by S ( P ) ( z ) : = j = 0 n a ̃ j z j , a ̃ j : = a j | a j | m i n | a j | , 1 (here 0/0 is interpreted as 1). We define the norms of the truncation operators by S , D r e a l : = s u p P ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | ) , S , D c o m p : = s u p P c ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | . Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant c₁...

On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

Wojciech Banaszczyk, Artur Lipnicki (2015)

Annales Polonici Mathematici

Similarity:

The paper deals with the approximation by polynomials with integer coefficients in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Let P n , r be the space of polynomials of degree ≤ n which are divisible by the polynomial x r ( 1 - x ) r , r ≥ 0, and let P n , r P n , r be the set of polynomials with integer coefficients. Let μ ( P n , r ; L p ) be the maximal distance of elements of P n , r from P n , r in L p ( 0 , 1 ) . We give rather precise quantitative estimates of μ ( P n , r ; L ) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ ( P n , r ; L p ) for p ≠ 2. It follows that μ ( P n , r ; L p ) n - 2 r - 2 / p as n → ∞. The results...

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

Representations of the general linear group over symmetry classes of polynomials

Yousef Zamani, Mahin Ranjbari (2018)

Czechoslovak Mathematical Journal

Similarity:

Let V be the complex vector space of homogeneous linear polynomials in the variables x 1 , ... , x m . Suppose G is a subgroup of S m , and χ is an irreducible character of G . Let H d ( G , χ ) be the symmetry class of polynomials of degree d with respect to G and χ . For any linear operator T acting on V , there is a (unique) induced operator K χ ( T ) End ( H d ( G , χ ) ) acting on symmetrized decomposable polynomials by K χ ( T ) ( f 1 * f 2 * ... * f d ) = T f 1 * T f 2 * ... * T f d . In this paper, we show that the representation T K χ ( T ) of the general linear group G L ( V ) is equivalent to the direct sum of χ ( 1 ) copies...

Polynomials with values which are powers of integers

Rachid Boumahdi, Jesse Larone (2018)

Archivum Mathematicum

Similarity:

Let P be a polynomial with integral coefficients. Shapiro showed that if the values of P at infinitely many blocks of consecutive integers are of the form Q ( m ) , where Q is a polynomial with integral coefficients, then P ( x ) = Q ( R ( x ) ) for some polynomial R . In this paper, we show that if the values of P at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form m q where q is an integer greater than 1, then P ( x ) = ( R ( x ) ) q for some polynomial R ( x ) .

Calculation of the greatest common divisor of perturbed polynomials

Zítko, Jan, Eliaš, Ján

Similarity:

The coefficients of the greatest common divisor of two polynomials f and g (GCD ( f , g ) ) can be obtained from the Sylvester subresultant matrix S j ( f , g ) transformed to lower triangular form, where 1 j d and d = deg(GCD ( f , g ) ) needs to be computed. Firstly, it is supposed that the coefficients of polynomials are given exactly. Transformations of S j ( f , g ) for an arbitrary allowable j are in details described and an algorithm for the calculation of the GCD ( f , g ) is formulated. If inexact polynomials are given, then an approximate...

On monogenity of certain pure number fields of degrees 2 r · 3 k · 7 s

Hamid Ben Yakkou, Jalal Didi (2024)

Mathematica Bohemica

Similarity:

Let K = ( α ) be a pure number field generated by a complex root α of a monic irreducible polynomial F ( x ) = x 2 r · 3 k · 7 s - m [ x ] , where r , k , s are three positive natural integers. The purpose of this paper is to study the monogenity of K . Our results are illustrated by some examples.

Linear maps preserving elements annihilated by the polynomial X Y - Y X

Jianlian Cui, Jinchuan Hou (2006)

Studia Mathematica

Similarity:

Let H and K be complex complete indefinite inner product spaces, and ℬ(H,K) (ℬ(H) if K = H) the set of all bounded linear operators from H into K. For every T ∈ ℬ(H,K), denote by T the indefinite conjugate of T. Suppose that Φ: ℬ(H) → ℬ(K) is a bijective linear map. We prove that Φ satisfies Φ ( A ) Φ ( B ) = Φ ( B ) Φ ( A ) for all A, B ∈ ℬ(H) with A B = B A if and only if there exist a nonzero real number c and a generalized indefinite unitary operator U ∈ ℬ(H,K) such that Φ ( A ) = c U A U for all A ∈ ℬ(H).

Heights of squares of Littlewood polynomials and infinite series

Artūras Dubickas (2012)

Annales Polonici Mathematici

Similarity:

Let P be a unimodular polynomial of degree d-1. Then the height H(P²) of its square is at least √(d/2) and the product L(P²)H(P²), where L denotes the length of a polynomial, is at least d². We show that for any ε > 0 and any d ≥ d(ε) there exists a polynomial P with ±1 coefficients of degree d-1 such that H(P²) < (2+ε)√(dlogd) and L(P²)H(P²)< (16/3+ε)d²log d. A similar result is obtained for the series with ±1 coefficients. Let A m be the mth coefficient of the square f(x)² of...

Location of the critical points of certain polynomials

Somjate Chaiya, Aimo Hinkkanen (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let 𝔻 denote the unit disk { z : | z | < 1 } in the complex plane . In this paper, we study a family of polynomials P with only one zero lying outside 𝔻 ¯ .  We establish  criteria for P to satisfy implying that each of P and P '   has exactly one critical point outside 𝔻 ¯ .

On a generalization of the Beiter Conjecture

Bartłomiej Bzdęga (2016)

Acta Arithmetica

Similarity:

We prove that for every ε > 0 and every nonnegative integer w there exist primes p 1 , . . . , p w such that for n = p 1 . . . p w the height of the cyclotomic polynomial Φ n is at least ( 1 - ε ) c w M n , where M n = i = 1 w - 2 p i 2 w - 1 - i - 1 and c w is a constant depending only on w; furthermore l i m w c w 2 - w 0 . 71 . In our construction we can have p i > h ( p 1 . . . p i - 1 ) for all i = 1,...,w and any function h: ℝ₊ → ℝ₊.

Polynomials and degrees of maps in real normed algebras

Takis Sakkalis (2020)

Communications in Mathematics

Similarity:

Let 𝒜 be the algebra of quaternions or octonions 𝕆 . In this manuscript an elementary proof is given, based on ideas of Cauchy and D’Alembert, of the fact that an ordinary polynomial f ( t ) 𝒜 [ t ] has a root in 𝒜 . As a consequence, the Jacobian determinant | J ( f ) | is always non-negative in 𝒜 . Moreover, using the idea of the topological degree we show that a regular polynomial g ( t ) over 𝒜 has also a root in 𝒜 . Finally, utilizing multiplication ( * ) in 𝒜 , we prove various results on the topological degree...

Beyond two criteria for supersingularity: coefficients of division polynomials

Christophe Debry (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a cubic, monic and separable polynomial over a field of characteristic p 3 and let E be the elliptic curve given by y 2 = f ( x ) . In this paper we prove that the coefficient at x 1 2 p ( p - 1 ) in the p –th division polynomial of E equals the coefficient at x p - 1 in f ( x ) 1 2 ( p - 1 ) . For elliptic curves over a finite field of characteristic p , the first coefficient is zero if and only if E is supersingular, which by a classical criterion of Deuring (1941) is also equivalent to the vanishing of the second coefficient. So the...

A Green's function for θ-incomplete polynomials

Joe Callaghan (2007)

Annales Polonici Mathematici

Similarity:

Let K be any subset of N . We define a pluricomplex Green’s function V K , θ for θ-incomplete polynomials. We establish properties of V K , θ analogous to those of the weighted pluricomplex Green’s function. When K is a regular compact subset of N , we show that every continuous function that can be approximated uniformly on K by θ-incomplete polynomials, must vanish on K s u p p ( d d c V K , θ ) N . We prove a version of Siciak’s theorem and a comparison theorem for θ-incomplete polynomials. We compute s u p p ( d d c V K , θ ) N when K is a compact...

On classifying Laguerre polynomials which have Galois group the alternating group

Pradipto Banerjee, Michael Filaseta, Carrie E. Finch, J. Russell Leidy (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We show that the discriminant of the generalized Laguerre polynomial L n ( α ) ( x ) is a non-zero square for some integer pair ( n , α ) , with n 1 , if and only if ( n , α ) belongs to one of 30 explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of L n ( α ) ( x ) over is the alternating group A n . For example, we establish that for all but finitely many positive integers n 2 ( mod 4 ) , the only α for which the Galois group of L n ( α ) ( x ) over is A n is...

The number of minimum points of a positive quadratic form

G. L. Watson

Similarity:

CONTENTSIntroduction.......................................................................................61. Definition of certain special forms...........................................62. Statement of results...................................................................83. Proof of Theorem 2.....................................................................94. Preliminaries for Theorem 1.....................................................105. Further preliminaries for Theorem...