Displaying similar documents to “On the solution set of the nonconvex sweeping process”

Existence and uniqueness of periodic solutions for odd-order ordinary differential equations

Yongxiang Li, He Yang (2011)

Annales Polonici Mathematici

Similarity:

The paper deals with the existence and uniqueness of 2π-periodic solutions for the odd-order ordinary differential equation u ( 2 n + 1 ) = f ( t , u , u ' , . . . , u ( 2 n ) ) , where f : × 2 n + 1 is continuous and 2π-periodic with respect to t. Some new conditions on the nonlinearity f ( t , x , x , . . . , x 2 n ) to guarantee the existence and uniqueness are presented. These conditions extend and improve the ones presented by Cong [Appl. Math. Lett. 17 (2004), 727-732].

Multiple positive solutions of a nonlinear fourth order periodic boundary value problem

Lingbin Kong, Daqing Jiang (1998)

Annales Polonici Mathematici

Similarity:

The fourth order periodic boundary value problem u ( 4 ) - m u + F ( t , u ) = 0 , 0 < t < 2π, with u ( i ) ( 0 ) = u ( i ) ( 2 π ) , i = 0,1,2,3, is studied by using the fixed point index of mappings in cones, where F is a nonnegative continuous function and 0 < m < 1. Under suitable conditions on F, it is proved that the problem has at least two positive solutions if m ∈ (0,M), where M is the smallest positive root of the equation tan mπ = -tanh mπ, which takes the value 0.7528094 with an error of ± 10 - 7 .

Generalized c -almost periodic type functions in n

M. Kostić (2021)

Archivum Mathematicum

Similarity:

In this paper, we analyze multi-dimensional quasi-asymptotically c -almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl c -almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically c -almost periodic functions and reconsider the notion of semi- c -periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide...

Anti-periodic solutions to a parabolic hemivariational inequality

Jong Yeoul Park, Hyun Min Kim, Sun Hye Park (2004)

Kybernetika

Similarity:

In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form b ( u ) , where b L loc ( R ) . Extending b to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.

Periodic solutions of evolution problem associated with moving convex sets

Charles Castaing, Manuel D.P. Monteiro Marques (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

This paper is concerned with periodic solutions for perturbations of the sweeping process introduced by J.J. Moreau in 1971. The perturbed equation has the form - D u N C ( t ) ( u ( t ) ) + f ( t , u ( t ) ) where C is a T-periodic multifunction from [0,T] into the set of nonempty convex weakly compact subsets of a separable Hilbert space H, N C ( t ) ( u ( t ) ) is the normal cone of C(t) at u(t), f:[0,T] × H∪H is a Carathéodory function and Du is the differential measure of the periodic BV solution u. Several existence results of periodic solutions...

Three periodic solutions for a class of higher-dimensional functional differential equations with impulses

Yongkun Li, Changzhao Li, Juan Zhang (2010)

Annales Polonici Mathematici

Similarity:

By using the well-known Leggett–Williams multiple fixed point theorem for cones, some new criteria are established for the existence of three positive periodic solutions for a class of n-dimensional functional differential equations with impulses of the form ⎧y’(t) = A(t)y(t) + g(t,yt), t t j , j ∈ ℤ, ⎨ ⎩ y ( t j ) = y ( t ¯ j ) + I j ( y ( t j ) ) , where A ( t ) = ( a i j ( t ) ) n × n is a nonsingular matrix with continuous real-valued entries.

Stable periodic solutions in scalar periodic differential delay equations

Anatoli Ivanov, Sergiy Shelyag (2023)

Archivum Mathematicum

Similarity:

A class of nonlinear simple form differential delay equations with a T -periodic coefficient and a constant delay τ > 0 is considered. It is shown that for an arbitrary value of the period T > 4 τ - d 0 , for some d 0 > 0 , there is an equation in the class such that it possesses an asymptotically stable T -period solution. The periodic solutions are constructed explicitly for the piecewise constant nonlinearities and the periodic coefficients involved, by reduction of the problem to one-dimensional maps. The...

The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian

Jean Mawhin (2006)

Journal of the European Mathematical Society

Similarity:

We prove an Ambrosetti–Prodi type result for the periodic solutions of the equation ( | u ' | p 2 u ' ) ) ' + f ( u ) u ' + g ( x , u ) = t , when f is arbitrary and g ( x , u ) + or g ( x , u ) when | u | . The proof uses upper and lower solutions and the Leray–Schauder degree.

Existence of nonnegative periodic solutions in neutral integro-differential equations with functional delay

Imene Soulahia, Abdelouaheb Ardjouni, Ahcene Djoudi (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay x ' ( t ) = - t - τ ( t ) t a ( t , s ) g ( x ( s ) ) d s + d d t Q ( t , x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for τ , g , a , Q and G to show that this sum of mappings fits into the framework of a modification of...