The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the global existence for the Muskat problem”

Global analytic and Gevrey surjectivity of the Mizohata operator D 2 + i x 2 2 k D 1

Lamberto Cattabriga, Luisa Zanghirati (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

The surjectivity of the operator D 2 + i x 2 2 k D 1 from the Gevrey space E s R 2 , s 1 , onto itself and its non-surjectivity from E s R 3 to E s R 3 is proved.

On the topology of polynomials with bounded integer coefficients

De-Jun Feng (2016)

Journal of the European Mathematical Society

Similarity:

For a real number q > 1 and a positive integer m , let Y m ( q ) : = i = 0 n ϵ i q i : ϵ i 0 , ± 1 , ... , ± m , n = 0 , 1 , ... . In this paper, we show that Y m ( q ) is dense in if and only if q < m + 1 and q is not a Pisot number. This completes several previous results and answers an open question raised by Erdös, Joó and Komornik [8].

L p inequalities for the growth of polynomials with restricted zeros

Nisar A. Rather, Suhail Gulzar, Aijaz A. Bhat (2022)

Archivum Mathematicum

Similarity:

Let P ( z ) = ν = 0 n a ν z ν be a polynomial of degree at most n which does not vanish in the disk | z | < 1 , then for 1 p < and R > 1 , Boas and Rahman proved P ( R z ) p ( R n + z p / 1 + z p ) P p . In this paper, we improve the above inequality for 0 p < by involving some of the coefficients of the polynomial P ( z ) . Analogous result for the class of polynomials P ( z ) having no zero in | z | > 1 is also given.

Geometric rigidity of × m invariant measures

Michael Hochman (2012)

Journal of the European Mathematical Society

Similarity:

Let μ be a probability measure on [ 0 , 1 ] which is invariant and ergodic for T a ( x ) = a x 𝚖𝚘𝚍 1 , and 0 < 𝚍𝚒𝚖 μ < 1 . Let f be a local diffeomorphism on some open set. We show that if E and ( f μ ) E μ E , then f ' ( x ) ± a r : r at μ -a.e. point x f - 1 E . In particular, if g is a piecewise-analytic map preserving μ then there is an open g -invariant set U containing supp μ such that g U is piecewise-linear with slopes which are rational powers of a . In a similar vein, for μ as above, if b is another integer and a , b are not powers of a common integer, and if ν is...

Local-in-time existence for the non-resistive incompressible magneto-micropolar fluids

Peixin Zhang, Mingxuan Zhu (2022)

Applications of Mathematics

Similarity:

We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data u 0 H s - 1 + ε , w 0 H s - 1 and b 0 H s for s > 3 2 and any 0 < ε < 1 . The initial regularity of the micro-rotational velocity w is weaker than velocity of the fluid u .

A propagation theorem for a class of microfunctions

Andrea D&amp;#039;Agnolo, Giuseppe Zampieri (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let A be a closed set of M R n , whose conormai cones x + y x * A , x A , have locally empty intersection. We first show in §1 that dist x , A , x M A is a C 1 function. We then represent the n microfunctions of C A | X , X C n , using cohomology groups of O X of degree 1. By the results of § 1-3, we are able to prove in §4 that the sections of C A | X π ˙ - 1 x 0 , x 0 A , satisfy the principle of the analytic continuation in the complex integral manifolds of H ϕ i C i = 1 , , m , ϕ i being a base for the linear hull of γ x 0 * A in T x 0 * M ; in particular we get Γ A × M T * M X C A | X A × M T ˙ * M X = 0 . When A is a half space with...

An empirical almost sure central limit theorem under the weak dependence assumptions and its application to copula processes

Marcin Dudziński (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let: 𝐘 = 𝐘 i , where 𝐘 i = Y i , 1 , . . . , Y i , d , i = 1 , 2 , , be a d -dimensional, identically distributed, stationary, centered process with uniform marginals and a joint cdf F , and F n 𝐱 : = 1 n i = 1 n 𝕀 Y i , 1 x 1 , , Y i , d x d denote the corresponding empirical cdf. In our work, we prove the almost sure central limit theorem for an empirical process B n = n F n - F under some weak dependence conditions due to Doukhan and Louhichi. Some application of the established result to copula processes is also presented.

A Hardy type inequality for W 0 m , 1 ( Ω ) functions

Hernán Castro, Juan Dávila, Hui Wang (2013)

Journal of the European Mathematical Society

Similarity:

We consider functions u W 0 m , 1 ( Ω ) , where Ω N is a smooth bounded domain, and m 2 is an integer. For all j 0 , 1 k m - 1 , such that 1 j + k m , we prove that i u ( x ) d ( x ) m - j - k W 0 k , 1 ( Ω ) with k ( i u ( x ) d ( x ) m - j - k ) L 1 ( Ω ) C u W m , 1 ( Ω ) , where d is a smooth positive function which coincides with dist ( x , Ω ) near Ω , and l denotes any partial differential operator of order l .

On square functions associated to sectorial operators

Christian Le Merdy (2004)

Bulletin de la Société Mathématique de France

Similarity:

We give new results on square functions x F = 0 F ( t A ) x 2 d t t 1 / 2 p associated to a sectorial operator A on L p for 1 &lt; p &lt; . Under the assumption that A is actually R -sectorial, we prove equivalences of the form K - 1 x G x F K x G for suitable functions F , G . We also show that A has a bounded H functional calculus with respect to . F . Then we apply our results to the study of conditions under which we have an estimate ( 0 | C e - t A ( x ) | 2 d t ) 1 / 2 q M x p , when - A generates a bounded semigroup e - t A on L p and C : D ( A ) L q is a linear mapping.

Existence and multiplicity of solutions for a fractional p -Laplacian problem of Kirchhoff type via Krasnoselskii’s genus

Ghania Benhamida, Toufik Moussaoui (2018)

Mathematica Bohemica

Similarity:

We use the genus theory to prove the existence and multiplicity of solutions for the fractional p -Kirchhoff problem - M Q | u ( x ) - u ( y ) | p | x - y | N + p s d x d y p - 1 ( - Δ ) p s u = λ h ( x , u ) in Ω , u = 0 on N Ω , where Ω is an open bounded smooth domain of N , p > 1 , N > p s with s ( 0 , 1 ) fixed, Q = 2 N ( C Ω × C Ω ) , λ > 0 is a numerical parameter, M and h are continuous functions.