The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Singular sets of holonomy maps for algebraic foliations”

On transcendental automorphisms of algebraic foliations

B. Scárdua (2003)

Fundamenta Mathematicae

Similarity:

We study the group Aut(ℱ) of (self) isomorphisms of a holomorphic foliation ℱ with singularities on a complex manifold. We prove, for instance, that for a polynomial foliation on ℂ² this group consists of algebraic elements provided that the line at infinity ℂP(2)∖ℂ² is not invariant under the foliation. If in addition ℱ is of general type (cf. [20]) then Aut(ℱ) is finite. For a foliation with hyperbolic singularities at infinity, if there is a transcendental automorphism then the foliation...

Unfoldings of holomorphic foliations.

Xavier Gómez-Mont (1989)

Publicacions Matemàtiques

Similarity:

The objective of this paper is to give a criterium for an unfolding of a holomorphic foliation with singularities to be holomorphically trivial.

A note on projective Levi flats and minimal sets of algebraic foliations

Alcides Lins Neto (1999)

Annales de l'institut Fourier

Similarity:

In this paper we prove that holomorphic codimension one singular foliations on n , n 3 have no non trivial minimal sets. We prove also that for n 3 , there is no real analytic Levi flat hypersurface in n .

Integrals for holomorphic foliations with singularities having all leaves compact

Xavier Gomez-Mont (1989)

Annales de l'institut Fourier

Similarity:

We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.

Uniformization of the leaves of a rational vector field

Alberto Candel, X. Gómez-Mont (1995)

Annales de l'institut Fourier

Similarity:

We study the analytic structure of the leaves of a holomorphic foliation by curves on a compact complex manifold. We show that if every leaf is a hyperbolic surface then they can be simultaneously uniformized in a continuous manner. In case the manifold is complex projective space a sufficient condition is that there are no algebraic leaf.