Spectral asymptotics for Schrödinger operators with a degenerate potential
Françoise Truc (2001-2002)
Séminaire de théorie spectrale et géométrie
Similarity:
Françoise Truc (2001-2002)
Séminaire de théorie spectrale et géométrie
Similarity:
D. R. Yafaev (1988-1989)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
D. R. Yafaev (1990)
Annales de l'I.H.P. Physique théorique
Similarity:
Rustem R. Gadyl'shin (1994)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
Yafaev, D. (1998)
Documenta Mathematica
Similarity:
Mouez Dimassi, Vesselin Petkov (2003-2004)
Séminaire Équations aux dérivées partielles
Similarity:
Victor Ivrii (1991)
Journées équations aux dérivées partielles
Similarity:
Yannick Gâtel, Dimitri Yafaev (1999)
Annales de l'institut Fourier
Similarity:
We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.