On the Diophantine equation
Sz. Tengely (2007)
Acta Arithmetica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Sz. Tengely (2007)
Acta Arithmetica
Similarity:
Jiagui Luo (2001)
Acta Arithmetica
Similarity:
Hui Lin Zhu (2011)
Acta Arithmetica
Similarity:
J. H. E. Cohn (2003)
Acta Arithmetica
Similarity:
Samir Siksek, John E. Cremona (2003)
Acta Arithmetica
Similarity:
Yongzhong Hu, Maohua Le (2015)
Acta Arithmetica
Similarity:
Let a,b,c be fixed coprime positive integers with mina,b,c > 1, and let m = maxa,b,c. Using the Gel’fond-Baker method, we prove that all positive integer solutions (x,y,z) of the equation satisfy maxx,y,z < 155000(log m)³. Moreover, using that result, we prove that if a,b,c satisfy certain divisibility conditions and m is large enough, then the equation has at most one solution (x,y,z) with minx,y,z > 1.
Florian Luca, Alain Togbé (2009)
Colloquium Mathematicae
Similarity:
We find all the solutions of the Diophantine equation in positive integers x,y,α,β,n ≥ 3 with x and y coprime.
Jianping Wang, Tingting Wang, Wenpeng Zhang (2015)
Colloquium Mathematicae
Similarity:
Let m be a positive integer. Using an upper bound for the solutions of generalized Ramanujan-Nagell equations given by Y. Bugeaud and T. N. Shorey, we prove that if 3 ∤ m, then the equation has only the positive integer solution (x,y,z) = (1,1,2).
A. Rotkiewicz, A. Schinzel (1987)
Colloquium Mathematicae
Similarity:
Florian Luca (2012)
Acta Arithmetica
Similarity:
S. Akhtar Arif, Amal S. Al-Ali (2002)
Acta Arithmetica
Similarity:
Min Tang, Quan-Hui Yang (2013)
Colloquium Mathematicae
Similarity:
Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation has only the solution (x,y,z) = (1,1,1). We give an extension of this result.
Peng Yang, Tianxin Cai (2012)
Acta Arithmetica
Similarity:
Csaba Rakaczki (2012)
Acta Arithmetica
Similarity:
Susil Kumar Jena (2015)
Communications in Mathematics
Similarity:
The two related Diophantine equations: and , have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.
Mihai Cipu (2015)
Acta Arithmetica
Similarity:
A set of m positive integers with the property that the product of any two of them is the predecessor of a perfect square is called a Diophantine m-tuple. Much work has been done attempting to prove that there exist no Diophantine quintuples. In this paper we give stringent conditions that should be met by a putative Diophantine quintuple. Among others, we show that any Diophantine quintuple a,b,c,d,e with a < b < c < d < ed < 1.55·1072b < 6.21·1035c = a + b + 2√(ab+1)...
Michael Stoll, P. G. Walsh, Pingzhi Yuan (2009)
Acta Arithmetica
Similarity:
N. Saradha, T. N. Shorey (2007)
Acta Arithmetica
Similarity:
Maciej Gawron (2013)
Colloquium Mathematicae
Similarity:
We consider the Brocard-Ramanujan type Diophantine equation P(z) = n! + m!, where P is a polynomial with rational coefficients. We show that the ABC Conjecture implies that this equation has only finitely many integer solutions when d ≥ 2 and .
Roger Baker, Andreas Weingartner (2014)
Acta Arithmetica
Similarity:
Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].