Displaying similar documents to “On the concentration of certain additive functions”

On Meager Additive and Null Additive Sets in the Cantor Space 2 ω and in ℝ

Tomasz Weiss (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let T be the standard Cantor-Lebesgue function that maps the Cantor space 2 ω onto the unit interval ⟨0,1⟩. We prove within ZFC that for every X 2 ω , X is meager additive in 2 ω iff T(X) is meager additive in ⟨0,1⟩. As a consequence, we deduce that the cartesian product of meager additive sets in ℝ remains meager additive in ℝ × ℝ. In this note, we also study the relationship between null additive sets in 2 ω and ℝ.

Sums of reciprocals of additive functions running over short intervals

J.-M. De Koninck, I. Kátai (2007)

Colloquium Mathematicae

Similarity:

Letting f(n) = A log n + t(n), where t(n) is a small additive function and A a positive constant, we obtain estimates for the quantities x n x + H 1 / f ( Q ( n ) ) and x p x + H 1 / f ( Q ( p ) ) , where H = H(x) satisfies certain growth conditions, p runs over prime numbers and Q is a polynomial with integer coefficients, whose leading coefficient is positive, and with all its roots simple.

On a conjecture of Sárközy and Szemerédi

Yong-Gao Chen (2015)

Acta Arithmetica

Similarity:

Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements A and B with lim sup A(x)B(x)/x ≤ 1 and A(x)B(x)-x = O(minA(x),B(x)), where A(x) and B(x) are the counting functions of A and B, respectively. We prove that, for infinite additive complements A and B, if lim sup A(x)B(x)/x ≤ 1, then, for any given...

Strong measure zero and meager-additive sets through the prism of fractal measures

Ondřej Zindulka (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of 2 ω is meager-additive if and only if it is -additive; if f : 2 ω 2 ω is continuous and X is meager-additive, then so is f ( X ) .

On the sum of dilations of a set

Antal Balog, George Shakan (2014)

Acta Arithmetica

Similarity:

We show that for any relatively prime integers 1 ≤ p < q and for any finite A ⊂ ℤ one has | p · A + q · A | ( p + q ) | A | - ( p q ) ( p + q - 3 ) ( p + q ) + 1 .

On the Behavior of Power Series with Completely Additive Coefficients

Oleg Petrushov (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Consider the power series ( z ) = n = 1 α ( n ) z , where α(n) is a completely additive function satisfying the condition α(p) = o(lnp) for prime numbers p. Denote by e(l/q) the root of unity e 2 π i l / q . We give effective omega-estimates for ( e ( l / p k ) r ) when r → 1-. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.

A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case

Fateme Kouchakinejad, Alexandra Šipošová (2017)

Kybernetika

Similarity:

For an aggregation function A we know that it is bounded by A * and A * which are its super-additive and sub-additive transformations, respectively. Also, it is known that if A * is directionally convex, then A = A * and A * is linear; similarly, if A * is directionally concave, then A = A * and A * is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively. ...

More remarks on the intersection ideal 𝒩

Tomasz Weiss (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove in ZFC that every 𝒩 additive set is 𝒩 additive, thus we solve Problem 20 from paper [Weiss T., A note on the intersection ideal 𝒩 , Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437-445] in the negative.

On Vitali-Hahn-Saks-Nikodym type theorems

Barbara T. Faires (1976)

Annales de l'institut Fourier

Similarity:

A Boolean algebra 𝒜 has the interpolation property (property (I)) if given sequences ( a n ) , ( b m ) in 𝒜 with a n b m for all n , m , there exists an element b in 𝒜 such that a n b b n for all n . Let 𝒜 denote an algebra with the property (I). It is shown that if ( μ n : 𝒜 X ) ( X a Banach space) is a sequence of strongly additive measures such that lim n μ n ( a ) exists for each a 𝒜 , then μ ( a ) = lim n μ n ( a ) defines a strongly additive map from 𝒜 to X the μ n ' s are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive...

New results on additive generator pairs of overlap and grouping functions

Liang Li-zhi, Wang Xue-ping (2025)

Kybernetika

Similarity:

In this article, we deeply reveal the relationship between functions θ and ϑ in an overlap function additively generated by an additive generator pair ( θ , ϑ ), which is used to characterize the conditions for an overlap function additively generated by the pair being a triangular norm by terms of functions θ and ϑ . We also establish the conditions that an overlap function additively generated by the additive generator pair can be obtained by a distortion of a triangular norm and a (pseudo)...

Unique factorisation of additive induced-hereditary properties

Alastair Farrugia, R. Bruce Richter (2004)

Discussiones Mathematicae Graph Theory

Similarity:

An additive hereditary graph property is a set of graphs, closed under isomorphism and under taking subgraphs and disjoint unions. Let ₁,...,ₙ be additive hereditary graph properties. A graph G has property (₁∘...∘ₙ) if there is a partition (V₁,...,Vₙ) of V(G) into n sets such that, for all i, the induced subgraph G [ V i ] is in i . A property is reducible if there are properties , such that = ∘ ; otherwise it is irreducible. Mihók, Semanišin and Vasky [8] gave a factorisation for any additive...