Displaying similar documents to “Oscillation and global attractivity in a discrete survival red blood cells model”

Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type

Anna Andruch-Sobiło, Andrzej Drozdowicz (2008)

Mathematica Bohemica

Similarity:

In the paper we consider the difference equation of neutral type Δ 3 [ x ( n ) - p ( n ) x ( σ ( n ) ) ] + q ( n ) f ( x ( τ ( n ) ) ) = 0 , n ( n 0 ) , where p , q : ( n 0 ) + ; σ , τ : , σ is strictly increasing and lim n σ ( n ) = ; τ is nondecreasing and lim n τ ( n ) = , f : , x f ( x ) > 0 . We examine the following two cases: 0 < p ( n ) λ * < 1 , σ ( n ) = n - k , τ ( n ) = n - l , and 1 < λ * p ( n ) , σ ( n ) = n + k , τ ( n ) = n + l , where k , l are positive integers. We obtain sufficient conditions under which all nonoscillatory solutions of the above equation tend to zero as n with a weaker assumption on q than the usual assumption i = n 0 q ( i ) = that is used in literature.

Bounded oscillation of nonlinear neutral differential equations of arbitrary order

Yeter Ş. Yilmaz, Ağacik Zafer (2001)

Czechoslovak Mathematical Journal

Similarity:

The paper is concerned with oscillation properties of n -th order neutral differential equations of the form [ x ( t ) + c x ( τ ( t ) ) ] ( n ) + q ( t ) f x ( σ ( t ) ) = 0 , t t 0 > 0 , where c is a real number with | c | 1 , q C ( [ t 0 , ) , ) , f C ( , ) , τ , σ C ( [ t 0 , ) , + ) with τ ( t ) < t and lim t τ ( t ) = lim t σ ( t ) = . Sufficient conditions are established for the existence of positive solutions and for oscillation of bounded solutions of the above equation. Combination of these conditions provides necessary and sufficient conditions for oscillation of bounded solutions of the equation. Furthermore, the results are generalized to equations...

Oscillation of second-order quasilinear retarded difference equations via canonical transform

George E. Chatzarakis, Deepalakshmi Rajasekar, Saravanan Sivagandhi, Ethiraju Thandapani (2024)

Mathematica Bohemica

Similarity:

We study the oscillatory behavior of the second-order quasi-linear retarded difference equation Δ ( p ( n ) ( Δ y ( n ) ) α ) + η ( n ) y β ( n - k ) = 0 under the condition n = n 0 p - 1 α ( n ) < (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.

Positive coefficients case and oscillation

Ján Ohriska (1998)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We consider the second order self-adjoint differential equation (1) (r(t)y’(t))’ + p(t)y(t) = 0 on an interval I, where r, p are continuous functions and r is positive on I. The aim of this paper is to show one possibility to write equation (1) in the same form but with positive coefficients, say r₁, p₁ and to derive a sufficient condition for equation (1) to be oscillatory in the case p is nonnegative and [ 1 / r ( t ) ] d t converges.

Forced oscillation of third order nonlinear dynamic equations on time scales

Baoguo Jia (2010)

Annales Polonici Mathematici

Similarity:

Consider the third order nonlinear dynamic equation x Δ Δ Δ ( t ) + p ( t ) f ( x ) = g ( t ) , (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation Δ ³ x ( n ) + n α | x | γ s g n ( n ) = ( - 1 ) n c , where α ≥ -1, γ > 0, c > 3, is oscillatory.

Oscillation theorems for third order nonlinear delay difference equations

Kumar S. Vidhyaa, Chinnappa Dharuman, Ethiraju Thandapani, Sandra Pinelas (2019)

Mathematica Bohemica

Similarity:

Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form Δ ( a n ( Δ ( b n ( Δ y n ) α ) ) ) + q n f ( y σ ( n ) ) = 0 to have property ( A ) or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.

On oscillatory nonlinear fourth-order difference equations with delays

Arun K. Tripathy (2018)

Mathematica Bohemica

Similarity:

In this work, oscillatory behaviour of solutions of a class of fourth-order neutral functional difference equations of the form Δ 2 ( r ( n ) Δ 2 ( y ( n ) + p ( n ) y ( n - m ) ) ) + q ( n ) G ( y ( n - k ) ) = 0 is studied under the assumption n = 0 n r ( n ) < . New oscillation criteria have been established which generalize some of the existing results in the literature.