Displaying similar documents to “A quasistatic contact problem with adhesion and friction for viscoelastic materials”

Analysis of a contact adhesive problem with normal compliance and nonlocal friction

Arezki Touzaline (2012)

Annales Polonici Mathematici

Similarity:

The paper deals with the problem of a quasistatic frictional contact between a nonlinear elastic body and a deformable foundation. The contact is modelled by a normal compliance condition in such a way that the penetration is restricted with a unilateral constraint and associated to the nonlocal friction law with adhesion. The evolution of the bonding field is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove...

A study of a unilateral and adhesive contact problem with normal compliance

Arezki Touzaline (2014)

Applicationes Mathematicae

Similarity:

The aim of this paper is to study a quasistatic unilateral contact problem between an elastic body and a foundation. The constitutive law is nonlinear and the contact is modelled with a normal compliance condition associated to a unilateral constraint and Coulomb's friction law. The adhesion between contact surfaces is taken into account and is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational...

The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory

Ammar Derbazi, Mohamed Dalah, Amar Megrous (2016)

Applications of Mathematics

Similarity:

We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field...

A frictional contact problem with adhesion for viscoelastic materials with long memory

Abderrezak Kasri (2021)

Applications of Mathematics

Similarity:

We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization...

Frictionless contact problem with adhesion and finite penetration for elastic materials

Arezki Touzaline (2010)

Annales Polonici Mathematici

Similarity:

The paper deals with the problem of quasistatic frictionless contact between an elastic body and a foundation. The elasticity operator is assumed to vanish for zero strain, to be Lipschitz continuous and strictly monotone with respect to the strain as well as Lebesgue measurable on the domain occupied by the body. The contact is modelled by normal compliance in such a way that the penetration is limited and restricted to unilateral contraints. In this problem we take into account adhesion...

A quasistatic unilateral and frictional contact problem with adhesion for elastic materials

Arezki Touzaline (2009)

Applicationes Mathematicae

Similarity:

We consider a quasistatic contact problem between a linear elastic body and a foundation. The contact is modelled with the Signorini condition and the associated non-local Coulomb friction law in which the adhesion of the contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation. We derive a variational formulation of the mechanical problem and prove existence of a weak solution if the friction coefficient is sufficiently...

Analysis of a frictionless contact problem for elastic bodies

S. Drabla, M. Sofonea, B. Teniou (1998)

Annales Polonici Mathematici

Similarity:

This paper deals with a nonlinear problem modelling the contact between an elastic body and a rigid foundation. The elastic constitutive law is assumed to be nonlinear and the contact is modelled by the well-known Signorini conditions. Two weak formulations of the model are presented and existence and uniqueness results are established using classical arguments of elliptic variational inequalities. Some equivalence results are presented and a strong convergence result involving a penalized...

Study of a contact problem with normal compliance and nonlocal friction

Arezki Touzaline (2012)

Applicationes Mathematicae

Similarity:

We consider a static frictional contact between a nonlinear elastic body and a foundation. The contact is modelled by a normal compliance condition such that the penetration is restricted with unilateral constraint and associated to the nonlocal friction law. We derive a variational formulation and prove its unique weak solvability if the friction coefficient is sufficiently small. Moreover, we prove the continuous dependence of the solution on the contact conditions. Also we study the...

A quasistatic bilateral contact problem with adhesion and friction for viscoelastic materials

Arezki Touzaline (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider a mathematical model which describes a contact problem between a deformable body and a foundation. The contact is bilateral and is modelled with Tresca's friction law in which adhesion is taken into account. The evolution of the bonding field is described by a first order differential equation and the material's behavior is modelled with a nonlinear viscoelastic constitutive law. We derive a variational formulation of the mechanical problem and prove the existence and uniqueness...

A quasistatic contact problem with unilateral constraint and slip-dependent friction

Arezki Touzaline (2015)

Applicationes Mathematicae

Similarity:

We consider a mathematical model of a quasistatic contact between an elastic body and an obstacle. The contact is modelled with unilateral constraint and normal compliance, associated to a version of Coulomb's law of dry friction where the coefficient of friction depends on the slip displacement. We present a weak formulation of the problem and establish an existence result. The proofs employ a time-discretization method, compactness and lower semicontinuity arguments.

Quasistatic frictional problems for elastic and viscoelastic materials

Oanh Chau, Dumitru Motreanu, Mircea Sofonea (2002)

Applications of Mathematics

Similarity:

We consider two quasistatic problems which describe the frictional contact between a deformable body and an obstacle, the so-called foundation. In the first problem the body is assumed to have a viscoelastic behavior, while in the other it is assumed to be elastic. The frictional contact is modeled by a general velocity dependent dissipation functional. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of evolution...