The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On preimages of ultrafilters in ZF”

Balcar's theorem on supports

Lev Bukovský (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In A theorem on supports in the theory of semisets [Comment. Math. Univ. Carolinae 14 (1973), no. 1, 1–6] B. Balcar showed that if σ D M is a support, M being an inner model of ZFC, and 𝒫 ( D σ ) M = r ` ` σ with r M , then r determines a preorder " " of D such that σ becomes a filter on ( D , ) generic over M . We show that if the relation r is replaced by a function 𝒫 ( D σ ) M = f - 1 ( σ ) , then there exists an equivalence relation " " on D and a partial order on D / such that D / is a complete Boolean algebra, σ / is a generic filter and [ f ( u ) ] = - ( u / ) for...

On the solvability of systems of linear equations over the ring of integers

Horst Herrlich, Eleftherios Tachtsis (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We investigate the question whether a system ( E i ) i I of homogeneous linear equations over is non-trivially solvable in provided that each subsystem ( E j ) j J with | J | c is non-trivially solvable in where c is a fixed cardinal number such that c < | I | . Among other results, we establish the following. (a) The answer is ‘No’ in the finite case (i.e., I being finite). (b) The answer is ‘No’ in the denumerable case (i.e., | I | = 0 and c a natural number). (c) The answer in case that I is uncountable and c 0 is ‘No...

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

Complex series and connected sets

B. Jasek

Similarity:

CONTENTSPREFACE..........................................................................................................................................................................3INTRODUCTION............................................................................................................................................................. 41. Notation. 2. Subject of the paper.Chapter I. DECOMPOSITION OF Σ INTO Σ 1 , Σ 2 , Σ 3 , Σ 4 INESSENTIAL RESTRICTIONOF GENERALITY ...............................................................................................................................................................