Displaying similar documents to “Boundary blow-up solutions for a cooperative system involving the p-Laplacian”

Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions

Honghui Yin, Zuodong Yang (2012)

Annales Polonici Mathematici

Similarity:

Our main purpose is to establish the existence of a positive solution of the system ⎧ - p ( x ) u = F ( x , u , v ) , x ∈ Ω, ⎨ - q ( x ) v = H ( x , u , v ) , x ∈ Ω, ⎩u = v = 0, x ∈ ∂Ω, where Ω N is a bounded domain with C² boundary, F ( x , u , v ) = λ p ( x ) [ g ( x ) a ( u ) + f ( v ) ] , H ( x , u , v ) = λ q ( x ) [ g ( x ) b ( v ) + h ( u ) ] , λ > 0 is a parameter, p(x),q(x) are functions which satisfy some conditions, and - p ( x ) u = - d i v ( | u | p ( x ) - 2 u ) is called the p(x)-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.

Vectorial quasilinear diffusion equation with dynamic boundary condition

Nakayashiki, Ryota

Similarity:

In this paper, we consider a class of initial-boundary value problems for quasilinear PDEs, subject to the dynamic boundary conditions. Each initial-boundary problem is denoted by (S) ε with a nonnegative constant ε , and for any ε 0 , (S) ε can be regarded as a vectorial transmission system between the quasilinear equation in the spatial domain Ω , and the parabolic equation on the boundary Γ : = Ω , having a sufficient smoothness. The objective of this study is to establish a mathematical method,...

Existence and nonexistence of solutions for a quasilinear elliptic system

Qin Li, Zuodong Yang (2015)

Annales Polonici Mathematici

Similarity:

By a sub-super solution argument, we study the existence of positive solutions for the system ⎧ - Δ p u = a ( x ) F ( x , u , v ) in Ω, ⎪ - Δ q v = a ( x ) F ( x , u , v ) in Ω, ⎨u,v > 0 in Ω, ⎩u = v = 0 on ∂Ω, where Ω is a bounded domain in N with smooth boundary or Ω = N . A nonexistence result is obtained for radially symmetric solutions.

Asymptotic analysis and sign-changing bubble towers for Lane–Emden problems

Francesca De Marchis, Isabella Ianni, Filomena Pacella (2015)

Journal of the European Mathematical Society

Similarity:

We consider the semilinear Lane–Emden problem where p > 1 and Ω is a smooth bounded domain of 2 . The aim of the paper is to analyze the asymptotic behavior of sign changing solutions of ( p ) , as p + . Among other results we show, under some symmetry assumptions on Ω , that the positive and negative parts of a family of symmetric solutions concentrate at the same point, as p + , and the limit profile looks like a tower of two bubbles given by a superposition of a regular and a singular solution of...

Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data

Amy Poh Ai Ling, Masahiko Shimojō (2019)

Mathematica Bohemica

Similarity:

We consider solutions of quasilinear equations u t = Δ u m + u p in N with the initial data u 0 satisfying 0 < u 0 < M and lim | x | u 0 ( x ) = M for some constant M > 0 . It is known that if 0 < m < p with p > 1 , the blow-up set is empty. We find solutions u that blow up throughout N when m > p > 1 .

Finite element variational crimes in the case of semiregular elements

Alexander Ženíšek (1996)

Applications of Mathematics

Similarity:

The finite element method for a strongly elliptic mixed boundary value problem is analyzed in the domain Ω whose boundary Ω is formed by two circles Γ 1 , Γ 2 with the same center S 0 and radii R 1 , R 2 = R 1 + ϱ , where ϱ R 1 . On one circle the homogeneous Dirichlet boundary condition and on the other one the nonhomogeneous Neumann boundary condition are prescribed. Both possibilities for u = 0 are considered. The standard finite elements satisfying the minimum angle condition are in this case inconvenient; thus...

Numerical approximation of the non-linear fourth-order boundary-value problem

Svobodová, Ivona

Similarity:

We consider functionals of a potential energy ψ ( u ) corresponding to 𝑎𝑛 𝑎𝑥𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 - 𝑣𝑎𝑙𝑢𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 . We are dealing with 𝑎 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑡ℎ𝑖𝑛 𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑝𝑙𝑎𝑡𝑒 with 𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 . Various types of the subsoil of the plate are described by various types of the 𝑛𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 nonlinear term ψ ( u ) . The aim of the paper is to find a suitable computational algorithm.

Existence of positive solutions for second order m-point boundary value problems

Ruyun Ma (2002)

Annales Polonici Mathematici

Similarity:

Let α,β,γ,δ ≥ 0 and ϱ:= γβ + αγ + αδ > 0. Let ψ(t) = β + αt, ϕ(t) = γ + δ - γt, t ∈ [0,1]. We study the existence of positive solutions for the m-point boundary value problem ⎧u” + h(t)f(u) = 0, 0 < t < 1, ⎨ α u ( 0 ) - β u ' ( 0 ) = i = 1 m - 2 a i u ( ξ i ) γ u ( 1 ) + δ u ' ( 1 ) = i = 1 m - 2 b i u ( ξ i ) , where ξ i ( 0 , 1 ) , a i , b i ( 0 , ) (for i ∈ 1,…,m-2) are given constants satisfying ϱ - i = 1 m - 2 a i ϕ ( ξ i ) > 0 , ϱ - i = 1 m - 2 b i ψ ( ξ i ) > 0 and Δ : = - i = 1 m - 2 a i ψ ( ξ i ) ϱ - i = 1 m - 2 a i ϕ ( ξ i ) ϱ - i = 1 m - 2 b i ψ ( ξ i ) - i = 1 m - 2 b i ϕ ( ξ i ) < 0 . We show the existence of positive solutions if f is either superlinear or sublinear by a simple application of a fixed point theorem in cones. Our result extends a result established by Erbe and...

Curved thin domains and parabolic equations

M. Prizzi, M. Rinaldi, K. P. Rybakowski (2002)

Studia Mathematica

Similarity:

Consider the family uₜ = Δu + G(u), t > 0, x Ω ε , ν ε u = 0 , t > 0, x Ω ε , ( E ε ) of semilinear Neumann boundary value problems, where, for ε > 0 small, the set Ω ε is a thin domain in l , possibly with holes, which collapses, as ε → 0⁺, onto a (curved) k-dimensional submanifold of l . If G is dissipative, then equation ( E ε ) has a global attractor ε . We identify a “limit” equation for the family ( E ε ) , prove convergence of trajectories and establish an upper semicontinuity result for the family ε as ε → 0⁺. ...

Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source

Xiangdong Zhao (2024)

Czechoslovak Mathematical Journal

Similarity:

We study the chemotaxis system with singular sensitivity and logistic-type source: u t = Δ u - χ · ( u v / v ) + r u - μ u k , 0 = Δ v - v + u under the non-flux boundary conditions in a smooth bounded domain Ω n , χ , r , μ > 0 , k > 1 and n 1 . It is shown with k ( 1 , 2 ) that the system possesses a global generalized solution for n 2 which is bounded when χ > 0 is suitably small related to r > 0 and the initial datum is properly small, and a global bounded classical solution for n = 1 .

Self-similar solutions in reaction-diffusion systems

Joanna Rencławowicz (2003)

Banach Center Publications

Similarity:

In this paper we examine self-similar solutions to the system u i t - d i Δ u i = k = 1 m u k p k i , i = 1,…,m, x N , t > 0, u i ( 0 , x ) = u 0 i ( x ) , i = 1,…,m, x N , where m > 1 and p k i > 0 , to describe asymptotics near the blow up point.

On higher-order semilinear parabolic equations with measures as initial data

Victor Galaktionov (2004)

Journal of the European Mathematical Society

Similarity:

We consider 2 m th-order ( m 2 ) semilinear parabolic equations u t = ( Δ ) m u ± | u | p 1 u in N × + ( p > 1 ) , with Dirac’s mass δ ( x ) as the initial function. We show that for p < p 0 = 1 + 2 m / N , the Cauchy problem admits a solution u ( x , t ) which is bounded and smooth for small t > 0 , while for p p 0 such a local in time solution does not exist. This leads to a boundary layer phenomenon in constructing a proper solution via regular approximations.

Infinitely many positive solutions for the Neumann problem involving the p-Laplacian

Giovanni Anello, Giuseppe Cordaro (2003)

Colloquium Mathematicae

Similarity:

We present two results on existence of infinitely many positive solutions to the Neumann problem ⎧ - Δ p u + λ ( x ) | u | p - 2 u = μ f ( x , u ) in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where Ω N is a bounded open set with sufficiently smooth boundary ∂Ω, ν is the outer unit normal vector to ∂Ω, p > 1, μ > 0, λ L ( Ω ) with e s s i n f x Ω λ ( x ) > 0 and f: Ω × ℝ → ℝ is a Carathéodory function. Our results ensure the existence of a sequence of nonzero and nonnegative weak solutions to the above problem.

Energy and Morse index of solutions of Yamabe type problems on thin annuli

Mohammed Ben Ayed, Khalil El Mehdi, Mohameden Ould Ahmedou, Filomena Pacella (2005)

Journal of the European Mathematical Society

Similarity:

We consider the Yamabe type family of problems ( P ε ) : Δ u ε = u ε ( n + 2 ) / ( n 2 ) , u ε > 0 in A ε , u ε = 0 on A ε , where A ε is an annulus-shaped domain of n , n 3 , which becomes thinner as ε 0 . We show that for every solution u ε , the energy A ε | u | 2 as well as the Morse index tend to infinity as ε 0 . This is proved through a fine blow up analysis of appropriate scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some elliptic problem on n , a half-space or an infinite strip. Our argument also involves a Liouville...

Positivity and anti-maximum principles for elliptic operators with mixed boundary conditions

Catherine Bandle, Joachim von Below, Wolfgang Reichel (2008)

Journal of the European Mathematical Society

Similarity:

We consider linear elliptic equations - Δ u + q ( x ) u = λ u + f in bounded Lipschitz domains D N with mixed boundary conditions u / n = σ ( x ) λ u + g on D . The main feature of this boundary value problem is the appearance of λ both in the equation and in the boundary condition. In general we make no assumption on the sign of the coefficient σ ( x ) . We study positivity principles and anti-maximum principles. One of our main results states that if σ is somewhere negative, q 0 and D q ( x ) d x > 0 then there exist two eigenvalues λ - 1 , λ 1 such the positivity...

A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type

Soohyun Bae (2023)

Archivum Mathematicum

Similarity:

We consider the quasilinear equation Δ p u + K ( | x | ) u q = 0 , and present the proof of the local existence of positive radial solutions near 0 under suitable conditions on K . Moreover, we provide a priori estimates of positive radial solutions near when r - K ( r ) for - p is bounded near .