The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Existence of solutions for impulsive fractional partial neutral integro-differential inclusions with state-dependent delay in Banach spaces”

Fractional integro-differential inclusions with state-dependent delay

Khalida Aissani, Mouffak Benchohra, Khalil Ezzinbi (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we establish sufficient conditions for the existence of mild solutions for fractional integro-differential inclusions with state-dependent delay. The techniques rely on fractional calculus, multivalued mapping on a bounded set and Bohnenblust-Karlin's fixed point theorem. Finally, we present an example to illustrate the theory.

Existence results for fractional integro-differential inclusions with state-dependent delay

Giovana Siracusa, Hernán R. Henríquez, Claudio Cuevas (2017)

Nonautonomous Dynamical Systems

Similarity:

In this paper we are concerned with a class of abstract fractional integro-differential inclusions with infinite state-dependent delay. Our approach is based on the existence of a resolvent operator for the homogeneous equation.We establish the existence of mild solutions using both contractive maps and condensing maps. Finally, an application to the theory of heat conduction in materials with memory is given.

Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay

Abbas, Saïd, Benchohra, Mouffak (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11 This paper deals with the existence and uniqueness of solutions of two classes of partial impulsive hyperbolic differential equations with fixed time impulses and state-dependent delay involving the Caputo fractional derivative. Our results are obtained upon suitable fixed point theorems.

Weighted fractional differential equations with infinite delay in Banach spaces

Qixiang Dong, Can Liu, Zhenbin Fan (2016)

Open Mathematics

Similarity:

This paper is devoted to the study of fractional differential equations with Riemann-Liouville fractional derivatives and infinite delay in Banach spaces. The weighted delay is developed to deal with the case of non-zero initial value, which leads to the unboundedness of the solutions. Existence and uniqueness results are obtained based on the theory of measure of non-compactness, Schaude’s and Banach’s fixed point theorems. As auxiliary results, a fractional Gronwall type inequality...

Existence results for impulsive semilinear fractional differential inclusions with delay in Banach spaces

Hammouche Hadda, Guerbati Kaddour, Benchohra Mouffak, Abada Nadjat (2013)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we introduce a new concept of mild solution of some class of semilinear fractional differential inclusions of order 0 < α < 1. Also we establish an existence result when the multivalued function has convex values. The result is obtained upon the nonlinear alternative of Leray-Schauder type.

Impulsive semilinear neutral functional differential inclusions with multivalued jumps

Nadjet Abada, Ravi P. Agarwal, Mouffak Benchohra, Hadda Hammouche (2011)

Applications of Mathematics

Similarity:

In this paper we establish sufficient conditions for the existence of mild solutions and extremal mild solutions for some densely defined impulsive semilinear neutral functional differential inclusions in separable Banach spaces. We rely on a fixed point theorem for the sum of completely continuous and contraction operators.