The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈...

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

The norm of the polynomial truncation operator on the unit disk and on [-1,1]

Tamás Erdélyi (2001)

Colloquium Mathematicae

Similarity:

Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ₙ (resp. c ) the set of all polynomials of degree at most n with real (resp. complex) coefficients. We define the truncation operators Sₙ for polynomials P c of the form P ( z ) : = j = 0 n a j z j , a j C , by S ( P ) ( z ) : = j = 0 n a ̃ j z j , a ̃ j : = a j | a j | m i n | a j | , 1 (here 0/0 is interpreted as 1). We define the norms of the truncation operators by S , D r e a l : = s u p P ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | ) , S , D c o m p : = s u p P c ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | . Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant c₁...

Representations of the general linear group over symmetry classes of polynomials

Yousef Zamani, Mahin Ranjbari (2018)

Czechoslovak Mathematical Journal

Similarity:

Let V be the complex vector space of homogeneous linear polynomials in the variables x 1 , ... , x m . Suppose G is a subgroup of S m , and χ is an irreducible character of G . Let H d ( G , χ ) be the symmetry class of polynomials of degree d with respect to G and χ . For any linear operator T acting on V , there is a (unique) induced operator K χ ( T ) End ( H d ( G , χ ) ) acting on symmetrized decomposable polynomials by K χ ( T ) ( f 1 * f 2 * ... * f d ) = T f 1 * T f 2 * ... * T f d . In this paper, we show that the representation T K χ ( T ) of the general linear group G L ( V ) is equivalent to the direct sum of χ ( 1 ) copies...

Polynomials with values which are powers of integers

Rachid Boumahdi, Jesse Larone (2018)

Archivum Mathematicum

Similarity:

Let P be a polynomial with integral coefficients. Shapiro showed that if the values of P at infinitely many blocks of consecutive integers are of the form Q ( m ) , where Q is a polynomial with integral coefficients, then P ( x ) = Q ( R ( x ) ) for some polynomial R . In this paper, we show that if the values of P at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form m q where q is an integer greater than 1, then P ( x ) = ( R ( x ) ) q for some polynomial R ( x ) .

On the value set of small families of polynomials over a finite field, II

Guillermo Matera, Mariana Pérez, Melina Privitelli (2014)

Acta Arithmetica

Similarity:

We obtain an estimate on the average cardinality (d,s,a) of the value set of any family of monic polynomials in q [ T ] of degree d for which s consecutive coefficients a = ( a d - 1 , . . . , a d - s ) are fixed. Our estimate asserts that ( d , s , a ) = μ d q + ( q 1 / 2 ) , where μ d : = r = 1 d ( ( - 1 ) r - 1 ) / ( r ! ) . We also prove that ( d , s , a ) = μ ² d q ² + ( q 3 / 2 ) , where ₂(d,s,a) is the average second moment of the value set cardinalities for any family of monic polynomials of q [ T ] of degree d with s consecutive coefficients fixed as above. Finally, we show that ( d , 0 ) = μ ² d q ² + ( q ) , where ₂(d,0) denotes the average second moment for...

Polynomials, sign patterns and Descartes' rule of signs

Vladimir Petrov Kostov (2019)

Mathematica Bohemica

Similarity:

By Descartes’ rule of signs, a real degree d polynomial P with all nonvanishing coefficients with c sign changes and p sign preservations in the sequence of its coefficients ( c + p = d ) has pos c positive and ¬ p negative roots, where pos c ( mod 2 ) and ¬ p ( mod 2 ) . For 1 d 3 , for every possible choice of the sequence of signs of coefficients of P (called sign pattern) and for every pair ( pos , neg ) satisfying these conditions there exists a polynomial P with exactly pos positive and exactly ¬ negative roots (all of them simple). For d 4 ...

Location of the critical points of certain polynomials

Somjate Chaiya, Aimo Hinkkanen (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let 𝔻 denote the unit disk { z : | z | < 1 } in the complex plane . In this paper, we study a family of polynomials P with only one zero lying outside 𝔻 ¯ .  We establish  criteria for P to satisfy implying that each of P and P '   has exactly one critical point outside 𝔻 ¯ .

Beyond two criteria for supersingularity: coefficients of division polynomials

Christophe Debry (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a cubic, monic and separable polynomial over a field of characteristic p 3 and let E be the elliptic curve given by y 2 = f ( x ) . In this paper we prove that the coefficient at x 1 2 p ( p - 1 ) in the p –th division polynomial of E equals the coefficient at x p - 1 in f ( x ) 1 2 ( p - 1 ) . For elliptic curves over a finite field of characteristic p , the first coefficient is zero if and only if E is supersingular, which by a classical criterion of Deuring (1941) is also equivalent to the vanishing of the second coefficient. So the...

A localization property for B p q s and F p q s spaces

Hans Triebel (1994)

Studia Mathematica

Similarity:

Let f j = k a k f ( 2 j + 1 x - 2 k ) , where the sum is taken over the lattice of all points k in n having integer-valued components, j∈ℕ and a k . Let A p q s be either B p q s or F p q s (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on n . The aim of the paper is to clarify under what conditions f j | A p q s is equivalent to 2 j ( s - n / p ) ( k | a k | p ) 1 / p f | A p q s .

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

On classifying Laguerre polynomials which have Galois group the alternating group

Pradipto Banerjee, Michael Filaseta, Carrie E. Finch, J. Russell Leidy (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We show that the discriminant of the generalized Laguerre polynomial L n ( α ) ( x ) is a non-zero square for some integer pair ( n , α ) , with n 1 , if and only if ( n , α ) belongs to one of 30 explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of L n ( α ) ( x ) over is the alternating group A n . For example, we establish that for all but finitely many positive integers n 2 ( mod 4 ) , the only α for which the Galois group of L n ( α ) ( x ) over is A n is...