Displaying similar documents to “Roughness of Filters in Lattice Implication Algebras”

Quotient structures in lattice effect algebras

Amir Hossein Sharafi, Rajb Ali Borzooei (2019)

Kybernetika

Similarity:

In this paper, we define some types of filters in lattice effect algebras, investigate some relations between them and introduce some new examples of lattice effect algebras. Then by using the strong filter, we find a CI-lattice congruence on lattice effect algebras, such that the induced quotient structure of it is a lattice effect algebra, too. Finally, under some suitable conditions, we get a quotient MV-effect algebra and a quotient orthomodular lattice, by this congruence relation. ...

Normalization of basic algebras

Miroslav Kolařík (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We consider algebras determined by all normal identities of basic algebras. For such algebras, we present a representation based on a q-lattice, i.e., the normalization of a lattice.

On the lattice of n-filters of an LM n-algebra

Dumitru Buşneag, Florentina Chirteş (2007)

Open Mathematics

Similarity:

For an n-valued Łukasiewicz-Moisil algebra L (or LM n-algebra for short) we denote by F n(L) the lattice of all n-filters of L. The goal of this paper is to study the lattice F n(L) and to give new characterizations for the meet-irreducible and completely meet-irreducible elements on F n(L).

PC-lattices: A Class of Bounded BCK-algebras

Sadegh Khosravi Shoar, Rajab Ali Borzooei, R. Moradian, Atefe Radfar (2018)

Bulletin of the Section of Logic

Similarity:

In this paper, we define the notion of PC-lattice, as a generalization of finite positive implicative BCK-algebras with condition (S) and bounded commutative BCK-algebras. We investiate some results for Pc-lattices being a new class of BCK-lattices. Specially, we prove that any Boolean lattice is a PC-lattice and we show that if X is a PC-lattice with condition S, then X is an involutory BCK-algebra if and only if X is a commutative BCK-algebra. Finally, we prove that any PC-lattice...

Atomicity of lattice effect algebras and their sub-lattice effect algebras

Jan Paseka, Zdena Riečanová (2009)

Kybernetika

Similarity:

We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states...

Classification systems and their lattice

Sándor Radeleczki (2002)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We define and study classification systems in an arbitrary CJ-generated complete lattice L. Introducing a partial order among the classification systems of L, we obtain a complete lattice denoted by Cls(L). By using the elements of the classification systems, another lattice is also constructed: the box lattice B(L) of L. We show that B(L) is an atomistic complete lattice, moreover Cls(L)=Cls(B(L)). If B(L) is a pseudocomplemented lattice, then every classification system of L is independent...