Displaying similar documents to “The Bergman projection in spaces of entire functions”

The Bergman projection on weighted spaces: L¹ and Herz spaces

Oscar Blasco, Salvador Pérez-Esteva (2002)

Studia Mathematica

Similarity:

We find necessary and sufficient conditions on radial weights w on the unit disc so that the Bergman type projections of Forelli-Rudin are bounded on L¹(w) and in the Herz spaces K p q ( w ) .

Commutant of multiplication operators in weighted Bergman spaces on polydisk

Ali Abkar (2020)

Czechoslovak Mathematical Journal

Similarity:

We study a certain operator of multiplication by monomials in the weighted Bergman space both in the unit disk of the complex plane and in the polydisk of the n -dimensional complex plane. Characterization of the commutant of such operators is given.

Weighted L -estimates for Bergman projections

José Bonet, Miroslav Engliš, Jari Taskinen (2005)

Studia Mathematica

Similarity:

We consider Bergman projections and some new generalizations of them on weighted L ( ) -spaces. A new reproducing formula is obtained. We show the boundedness of these projections for a large family of weights v which tend to 0 at the boundary with a polynomial speed. These weights may even be nonradial. For logarithmically decreasing weights bounded projections do not exist. In this case we instead consider the projective description problem for holomorphic inductive limits.

Compact operators on the weighted Bergman space A¹(ψ)

Tao Yu (2006)

Studia Mathematica

Similarity:

We show that a bounded linear operator S on the weighted Bergman space A¹(ψ) is compact and the predual space A₀(φ) of A¹(ψ) is invariant under S* if and only if S k z 0 as z → ∂D, where k z is the normalized reproducing kernel of A¹(ψ). As an application, we give conditions for an operator in the Toeplitz algebra to be compact.

Weighted sub-Bergman Hilbert spaces

Maria Nowak, Renata Rososzczuk (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We consider Hilbert spaces which are counterparts of the de Branges-Rovnyak spaces in the context of the weighted Bergman spaces A α 2 , 1 < α < . These spaces have already been studied in [8], [7], [5] and [1]. We extend some results from these papers.

On boundary behaviour of the Bergman projection on pseudoconvex domains

M. Jasiczak (2005)

Studia Mathematica

Similarity:

It is shown that on strongly pseudoconvex domains the Bergman projection maps a space L v k of functions growing near the boundary like some power of the Bergman distance from a fixed point into a space of functions which can be estimated by the consecutive power of the Bergman distance. This property has a local character. Let Ω be a bounded, pseudoconvex set with C³ boundary. We show that if the Bergman projection is continuous on a space E L ( Ω ) defined by weighted-sup seminorms and equipped...

The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials

Tomasz Beberok (2017)

Czechoslovak Mathematical Journal

Similarity:

We investigate the Bergman kernel function for the intersection of two complex ellipsoids { ( z , w 1 , w 2 ) n + 2 : | z 1 | 2 + + | z n | 2 + | w 1 | q < 1 , | z 1 | 2 + + | z n | 2 + | w 2 | r < 1 } . We also compute the kernel function for { ( z 1 , w 1 , w 2 ) 3 : | z 1 | 2 / n + | w 1 | q < 1 , | z 1 | 2 / n + | w 2 | r < 1 } and show deflation type identity between these two domains. Moreover in the case that q = r = 2 we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem. ...

Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball

Ömer Faruk Doğan, Adem Ersin Üreyen (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider harmonic Bergman-Besov spaces b α p and weighted Bloch spaces b α on the unit ball of n for the full ranges of parameters 0 < p < , α , and determine the precise inclusion relations among them. To verify these relations we use Carleson measures and suitable radial differential operators. For harmonic Bergman spaces various characterizations of Carleson measures are known. For weighted Bloch spaces we provide a characterization when α > 0 .

Compactness of composition operators acting on weighted Bergman-Orlicz spaces

Ajay K. Sharma, S. Ueki (2012)

Annales Polonici Mathematici

Similarity:

We characterize compact composition operators acting on weighted Bergman-Orlicz spaces α ψ = f H ( ) : ψ ( | f ( z ) | ) d A α ( z ) < , where α > -1 and ψ is a strictly increasing, subadditive convex function defined on [0,∞) and satisfying ψ(0) = 0, the growth condition l i m t ψ ( t ) / t = and the Δ₂-condition. In fact, we prove that C φ is compact on α ψ if and only if it is compact on the weighted Bergman space ² α .

On the Bergman distance on model domains in ℂⁿ

Gregor Herbort (2016)

Annales Polonici Mathematici

Similarity:

Let P be a real-valued and weighted homogeneous plurisubharmonic polynomial in n - 1 and let D denote the “model domain” z ∈ ℂⁿ | r(z):= Re z₁ + P(z’) < 0. We prove a lower estimate on the Bergman distance of D if P is assumed to be strongly plurisubharmonic away from the coordinate axes.

L ² h -domains of holomorphy and the Bergman kernel

Peter Pflug, Włodzimierz Zwonek (2002)

Studia Mathematica

Similarity:

We give a characterization of L ² h -domains of holomorphy with the help of the boundary behavior of the Bergman kernel and geometric properties of the boundary, respectively.

On locally convex extension of H in the unit ball and continuity of the Bergman projection

M. Jasiczak (2003)

Studia Mathematica

Similarity:

We define locally convex spaces LW and HW consisting of measurable and holomorphic functions in the unit ball, respectively, with the topology given by a family of weighted-sup seminorms. We prove that the Bergman projection is a continuous map from LW onto HW. These are the smallest spaces having this property. We investigate the topological and algebraic properties of HW.

Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball

Yu-Xia Liang, Chang-Jin Wang, Ze-Hua Zhou (2015)

Annales Polonici Mathematici

Similarity:

Let H() denote the space of all holomorphic functions on the unit ball ⊂ ℂⁿ. Let φ be a holomorphic self-map of and u∈ H(). The weighted composition operator u C φ on H() is defined by u C φ f ( z ) = u ( z ) f ( φ ( z ) ) . We investigate the boundedness and compactness of u C φ induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.

Weighted generalization of the Ramadanov's theorem and further considerations

Zbigniew Pasternak-Winiarski, Paweł Wójcicki (2018)

Czechoslovak Mathematical Journal

Similarity:

We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space N , and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting some special property of the domains, on which the weighted Bergman kernels converge uniformly. Moreover, we show that convergence of weighted Bergman kernels implies...

Toeplitz operators on Bergman spaces and Hardy multipliers

Wolfgang Lusky, Jari Taskinen (2011)

Studia Mathematica

Similarity:

We study Toeplitz operators T a with radial symbols in weighted Bergman spaces A μ p , 1 < p < ∞, on the disc. Using a decomposition of A μ p into finite-dimensional subspaces the operator T a can be considered as a coefficient multiplier. This leads to new results on boundedness of T a and also shows a connection with Hardy space multipliers. Using another method we also prove a necessary and sufficient condition for the boundedness of T a for a satisfying an assumption on the positivity of certain...

Bounded Toeplitz and Hankel products on weighted Bergman spaces of the unit ball

Małgorzata Michalska, Maria Nowak, Paweł Sobolewski (2010)

Annales Polonici Mathematici

Similarity:

We prove a sufficient condition for products of Toeplitz operators T f T , where f,g are square integrable holomorphic functions in the unit ball in ℂⁿ, to be bounded on the weighted Bergman space. This condition slightly improves the result obtained by K. Stroethoff and D. Zheng. The analogous condition for boundedness of products of Hankel operators H f H * g is also given.

The representation of multi-hypergraphs by set intersections

Stanisław Bylka, Jan Komar (2007)

Discussiones Mathematicae Graph Theory

Similarity:

This paper deals with weighted set systems (V,,q), where V is a set of indices, 2 V and the weight q is a nonnegative integer function on . The basic idea of the paper is to apply weighted set systems to formulate restrictions on intersections. It is of interest to know whether a weighted set system can be represented by set intersections. An intersection representation of (V,,q) is defined to be an indexed family R = ( R v ) v V of subsets of a set S such that | v E R v | = q ( E ) for each E ∈ . A necessary condition...

Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids

Romaric Tytgat (2015)

Czechoslovak Mathematical Journal

Similarity:

Nous donnons des résultats théoriques sur l’idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes f ¯ tels que l’opérateur de Hankel H f ¯ sur l’espace de Bergman à poids soit dans l’idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten 𝒮 p quand p tend vers 1 et nous nous appuyons sur le résultat de Engliš et Rochberg sur l’espace de Bergman. Nous parlons aussi des puissances de tels opérateurs....

Operator positivity and analytic models of commuting tuples of operators

Monojit Bhattacharjee, Jaydeb Sarkar (2016)

Studia Mathematica

Similarity:

We study analytic models of operators of class C · 0 with natural positivity assumptions. In particular, we prove that for an m-hypercontraction T C · 0 on a Hilbert space , there exist Hilbert spaces and ⁎ and a partially isometric multiplier θ ∈ ℳ (H²(),A²ₘ(⁎)) such that θ = A ² ( ) θ H ² ( ) and T P θ M z | θ , where A²ₘ(⁎) is the ⁎-valued weighted Bergman space and H²() is the -valued Hardy space over the unit disc . We then proceed to study analytic models for doubly commuting n-tuples of operators and investigate their...

Existence of solutions to the (rot,div)-system in L p -weighted spaces

Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

Similarity:

The existence of solutions to the elliptic problem rot v = w, div v = 0 in a bounded domain Ω ⊂ ℝ³, v · n ̅ | S = 0 , S = ∂Ω in weighted L p -Sobolev spaces is proved. It is assumed that an axis L crosses Ω and the weight is a negative power function of the distance to the axis. The main part of the proof is devoted to examining solutions of the problem in a neighbourhood of L. The existence in Ω follows from the technique of regularization.