Displaying similar documents to “Weak Solutions for a Fourth Order Degenerate Parabolic Equation”

Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems

Sachiko Ishida, Tomomi Yokota (2023)

Archivum Mathematicum

Similarity:

This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.

The parabolic-parabolic Keller-Segel equation

Kleber Carrapatoso (2014-2015)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].

A note on the paper of Y. Naito

Piotr Biler (2006)

Banach Center Publications

Similarity:

This note contains some remarks on the paper of Y. Naito concerning the parabolic system of chemotaxis and published in this volume.

Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents

Lingeshwaran Shangerganesh, Arumugam Gurusamy, Krishnan Balachandran (2017)

Communications in Mathematics

Similarity:

In this work, we study the existence and uniqueness of weak solutions of fourth-order degenerate parabolic equation with variable exponent using the difference and variation methods.