On behaviour of non-negative weak solutions of parabolic equations at the boundary
J. Chabrowski (1972)
Colloquium Mathematicae
Similarity:
J. Chabrowski (1972)
Colloquium Mathematicae
Similarity:
D. G. Aronson (1965)
Annales Polonici Mathematici
Similarity:
Sachiko Ishida, Tomomi Yokota (2023)
Archivum Mathematicum
Similarity:
This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.
Kleber Carrapatoso (2014-2015)
Séminaire Laurent Schwartz — EDP et applications
Similarity:
I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].
Vladimír Ďurikovič (1979)
Annales Polonici Mathematici
Similarity:
Piotr Biler (2006)
Banach Center Publications
Similarity:
This note contains some remarks on the paper of Y. Naito concerning the parabolic system of chemotaxis and published in this volume.
H. Ugowski (1971)
Annales Polonici Mathematici
Similarity:
Cung The Anh, Phan Quoc Hung (2008)
Annales Polonici Mathematici
Similarity:
We study the global existence and long-time behavior of solutions for a class of semilinear degenerate parabolic equations in an arbitrary domain.
H. Ugowski (1973)
Annales Polonici Mathematici
Similarity:
P. Besala (1975)
Annales Polonici Mathematici
Similarity:
Wolf von Wahl (1983)
Annales Polonici Mathematici
Similarity:
H. Ugowski (1972)
Annales Polonici Mathematici
Similarity:
Lingeshwaran Shangerganesh, Arumugam Gurusamy, Krishnan Balachandran (2017)
Communications in Mathematics
Similarity:
In this work, we study the existence and uniqueness of weak solutions of fourth-order degenerate parabolic equation with variable exponent using the difference and variation methods.
P. Besala (1963)
Colloquium Mathematicae
Similarity:
J. Murzewski, A. Sowa (1972)
Applicationes Mathematicae
Similarity: