Displaying similar documents to “Exact Solutions of Nonlocal BVPs for the Multidimensional Heat Equations”

Exact Solutions of Nonlocal Boundary Value Problems for One- and Two-Dimensional Heat Equation Точни решения на нелокални гранични задачи за едно- и двумерни уравнения на топлопроводноста

Dimovski, Ivan, Tsankov, Yulian (2012)

Union of Bulgarian Mathematicians

Similarity:

Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи...

Variational principles for parabolic equations

Ivan Hlaváček (1969)

Aplikace matematiky

Similarity:

New types of variational principles, each of them equivalent to the linear mixed problem for parabolic equation with initial and combined boundary conditions having been suggested by physicists, are discussed. Though the approach used here is purely mathematical so that it makes possible application to all mixed problems of mathematical physics with parabolic equations, only the example of heat conductions is used to show the physical interpretation. The principles under consideration...

Numerical modeling of heat exchange and unsaturated-saturated flow in porous media

Kačur, Jozef, Mihala, Patrik, Tóth, Michal

Similarity:

We discuss the numerical modeling of heat exchange between the infiltrated water and porous media matrix. An unsaturated-saturated flow is considered with boundary conditions reflecting the external driven forces. The developed numerical method is efficient and can be used for solving the inverse problems concerning determination of transmission coefficients for heat energy exchange inside and also on the boundary of porous media. Numerical experiments support our method.