Displaying similar documents to “Embeddings of doubling weighted Besov spaces”

Singularities in Muckenhoupt weighted function spaces

Dorothee D. Haroske (2008)

Banach Center Publications

Similarity:

We study weighted function spaces of Lebesgue, Besov and Triebel-Lizorkin type where the weight function belongs to some Muckenhoupt p class. The singularities of functions in these spaces are characterised by means of envelope functions.

Existence of solutions to the nonstationary Stokes system in H - μ 2 , 1 , μ ∈ (0,1), in a domain with a distinguished axis. Part 1. Existence near the axis in 2d

W. M. Zajączkowski (2007)

Applicationes Mathematicae

Similarity:

We consider the nonstationary Stokes system with slip boundary conditions in a bounded domain which contains some distinguished axis. We assume that the data functions belong to weighted Sobolev spaces with the weight equal to some power function of the distance to the axis. The aim is to prove the existence of solutions in corresponding weighted Sobolev spaces. The proof is divided into three parts. In the first, the existence in 2d in weighted spaces near the axis is shown. In the...

Weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type space

Elke Wolf (2009)

Annales Polonici Mathematici

Similarity:

Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator ψ C ϕ acting between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces. Under some assumptions on the weights we give a necessary as well as a sufficient condition for such an operator to be bounded resp. compact.

On weighted composition operators acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces

Elke Wolf (2011)

Annales Polonici Mathematici

Similarity:

Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator ψ C ϕ acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces. Under some assumptions on the weights we give a characterization for such an operator to be bounded in terms of the weights involved as well as the functions ψ and ϕ

On mean value properties involving a logarithm-type weight

Nikolai G. Kuznecov (2024)

Mathematica Bohemica

Similarity:

Two new assertions characterizing analytically disks in the Euclidean plane 2 are proved. Weighted mean value property of positive solutions to the Helmholtz and modified Helmholtz equations are used for this purpose; the weight has a logarithmic singularity. The obtained results are compared with those without weight that were found earlier.

Existence of solutions to the (rot,div)-system in L₂-weighted spaces

Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Similarity:

The existence of solutions to the elliptic problem rot v = w, div v = 0 in Ω ⊂ ℝ³, v · n ̅ | S = 0 , S = ∂Ω, in weighted Hilbert spaces is proved. It is assumed that Ω contains an axis L and the weight is a negative power of the distance to the axis. The main part of the proof is devoted to examining solutions in a neighbourhood of L. Their existence in Ω follows by regularization.

Centered weighted composition operators via measure theory

Mohammad Reza Jabbarzadeh, Mehri Jafari Bakhshkandi (2018)

Mathematica Bohemica

Similarity:

We describe the centered weighted composition operators on L 2 ( Σ ) in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert’s theorem on centered composition operators.

Existence of solutions to the (rot,div)-system in L p -weighted spaces

Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

Similarity:

The existence of solutions to the elliptic problem rot v = w, div v = 0 in a bounded domain Ω ⊂ ℝ³, v · n ̅ | S = 0 , S = ∂Ω in weighted L p -Sobolev spaces is proved. It is assumed that an axis L crosses Ω and the weight is a negative power function of the distance to the axis. The main part of the proof is devoted to examining solutions of the problem in a neighbourhood of L. The existence in Ω follows from the technique of regularization.

Disjoint hypercyclic powers of weighted translations on groups

Liang Zhang, Hui-Qiang Lu, Xiao-Mei Fu, Ze-Hua Zhou (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a locally compact group and let 1 p < . Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space L p ( G ) in terms of the weights. Sufficient...

Complex symmetric weighted composition operators on the Hardy space

Cao Jiang, Shi-An Han, Ze-Hua Zhou (2020)

Czechoslovak Mathematical Journal

Similarity:

This paper identifies a class of complex symmetric weighted composition operators on H 2 ( 𝔻 ) that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional. ...

Weighted bounds for variational Fourier series

Yen Do, Michael Lacey (2012)

Studia Mathematica

Similarity:

For 1 < p < ∞ and for weight w in A p , we show that the r-variation of the Fourier sums of any function f in L p ( w ) is finite a.e. for r larger than a finite constant depending on w and p. The fact that the variation exponent depends on w is necessary. This strengthens previous work of Hunt-Young and is a weighted extension of a variational Carleson theorem of Oberlin-Seeger-Tao-Thiele-Wright. The proof uses weighted adaptation of phase plane analysis and a weighted extension of a variational...

The linear bound in A₂ for Calderón-Zygmund operators: a survey

Michael Lacey (2011)

Banach Center Publications

Similarity:

For an L²-bounded Calderón-Zygmund Operator T acting on L ² ( d ) , and a weight w ∈ A₂, the norm of T on L²(w) is dominated by C T | | w | | A . The recent theorem completes a line of investigation initiated by Hunt-Muckenhoupt-Wheeden in 1973 (MR0312139), has been established in different levels of generality by a number of authors over the last few years. It has a subtle proof, whose full implications will unfold over the next few years. This sharp estimate requires that the A₂ character of the weight can...

A parabolic system in a weighted Sobolev space

Adam Kubica, Wojciech M. Zajączkowski (2007)

Applicationes Mathematicae

Similarity:

We examine the regularity of solutions of a certain parabolic system in the weighted Sobolev space W 2 , μ 2 , 1 , where the weight is of the form r μ , r is the distance from a distinguished axis and μ ∈ (0,1).

On the Banach-Stone problem

Jyh-Shyang Jeang, Ngai-Ching Wong (2003)

Studia Mathematica

Similarity:

Let X and Y be locally compact Hausdorff spaces, let E and F be Banach spaces, and let T be a linear isometry from C₀(X,E) into C₀(Y,F). We provide three new answers to the Banach-Stone problem: (1) T can always be written as a generalized weighted composition operator if and only if F is strictly convex; (2) if T is onto then T can be written as a weighted composition operator in a weak sense; and (3) if T is onto and F does not contain a copy of then T can be written as a weighted...

Existence of solutions to the Poisson equation in L p -weighted spaces

Joanna Rencławowicz, Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

Similarity:

We examine the Poisson equation with boundary conditions on a cylinder in a weighted space of L p , p≥ 3, type. The weight is a positive power of the distance from a distinguished plane. To prove the existence of solutions we use our result on existence in a weighted L₂ space.

The representation of multi-hypergraphs by set intersections

Stanisław Bylka, Jan Komar (2007)

Discussiones Mathematicae Graph Theory

Similarity:

This paper deals with weighted set systems (V,,q), where V is a set of indices, 2 V and the weight q is a nonnegative integer function on . The basic idea of the paper is to apply weighted set systems to formulate restrictions on intersections. It is of interest to know whether a weighted set system can be represented by set intersections. An intersection representation of (V,,q) is defined to be an indexed family R = ( R v ) v V of subsets of a set S such that | v E R v | = q ( E ) for each E ∈ . A necessary condition...

Disc formulas for the weighted Siciak-Zahariuta extremal function

Benedikt Steinar Magnússon, Ragnar Sigurdsson (2007)

Annales Polonici Mathematici

Similarity:

We prove a disc formula for the weighted Siciak-Zahariuta extremal function V X , q for an upper semicontinuous function q on an open connected subset X in ℂⁿ. This function is also known as the weighted Green function with logarithmic pole at infinity and weighted global extremal function.

Sharp embedding results for spaces of smooth functions with power weights

Martin Meyries, Mark Veraar (2012)

Studia Mathematica

Similarity:

We consider function spaces of Besov, Triebel-Lizorkin, Bessel-potential and Sobolev type on d , equipped with power weights w ( x ) = | x | γ , γ > -d. We prove two-weight Sobolev embeddings for these spaces. Moreover, we precisely characterize for which parameters the embeddings hold. The proofs are presented in such a way that they also hold for vector-valued functions.

Solutions to the equation div u = f in weighted Sobolev spaces

Katrin Schumacher (2008)

Banach Center Publications

Similarity:

We consider the problem div u = f in a bounded Lipschitz domain Ω, where f with Ω f = 0 is given. It is shown that the solution u, constructed as in Bogovski’s approach in [1], fulfills estimates in the weighted Sobolev spaces W w k , q ( Ω ) , where the weight function w is in the class of Muckenhoupt weights A q .

Commutant of multiplication operators in weighted Bergman spaces on polydisk

Ali Abkar (2020)

Czechoslovak Mathematical Journal

Similarity:

We study a certain operator of multiplication by monomials in the weighted Bergman space both in the unit disk of the complex plane and in the polydisk of the n -dimensional complex plane. Characterization of the commutant of such operators is given.

Lipschitz continuity in Muckenhoupt 𝓐₁ weighted function spaces

Dorothee D. Haroske (2011)

Banach Center Publications

Similarity:

We study continuity envelopes of function spaces B p , q s ( , w ) and F p , q s ( , w ) where the weight belongs to the Muckenhoupt class ₁. This essentially extends partial forerunners in [13, 14]. We also indicate some applications of these results.

Monotonicity of generalized weighted mean values

Alfred Witkowski (2004)

Colloquium Mathematicae

Similarity:

The author gives a new simple proof of monotonicity of the generalized extended mean values M ( r , s ) = ( ( f s d μ ) / ( f r d μ ) ) 1 / ( s - r ) introduced by F. Qi.

Weighted L -estimates for Bergman projections

José Bonet, Miroslav Engliš, Jari Taskinen (2005)

Studia Mathematica

Similarity:

We consider Bergman projections and some new generalizations of them on weighted L ( ) -spaces. A new reproducing formula is obtained. We show the boundedness of these projections for a large family of weights v which tend to 0 at the boundary with a polynomial speed. These weights may even be nonradial. For logarithmically decreasing weights bounded projections do not exist. In this case we instead consider the projective description problem for holomorphic inductive limits.

ω-Calderón-Zygmund operators

Sijue Wu (1995)

Studia Mathematica

Similarity:

We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when ω A .

Two-weighted criteria for integral transforms with multiple kernels

Vakhtang Kokilashvili, Alexander Meskhi (2006)

Banach Center Publications

Similarity:

Necessary and sufficient conditions governing two-weight L p norm estimates for multiple Hardy and potential operators are presented. Two-weight inequalities for potentials defined on nonhomogeneous spaces are also discussed. Sketches of the proofs for most of the results are given.