Displaying similar documents to “Steady compressible Oseen flow with slip boundary conditions”

On the spectral instability of parallel shear flows

Emmanuel Grenier, Yan Guo, Toan T. Nguyen (2014-2015)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

This short note is to announce our recent results [2,3] which provide a complete mathematical proof of the viscous destabilization phenomenon, pointed out by Heisenberg (1924), C.C. Lin and Tollmien (1940s), among other prominent physicists. Precisely, we construct growing modes of the linearized Navier-Stokes equations about general stationary shear flows in a bounded channel (channel flows) or on a half-space (boundary layers), for sufficiently large Reynolds number R . Such an instability...

Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions

Cholmin Sin, Sin-Il Ri (2022)

Mathematica Bohemica

Similarity:

We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided p ( x ) > 2 n / ( n + 2 ) . To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.

Stokes equations in asymptotically flat layers

Helmut Abels (2005)

Banach Center Publications

Similarity:

We study the generalized Stokes resolvent equations in asymptotically flat layers, which can be considered as compact perturbations of an infinite (flat) layer Ω = n - 1 × ( - 1 , 1 ) . Besides standard non-slip boundary conditions, we consider a mixture of slip and non-slip boundary conditions on the upper and lower boundary, respectively. We discuss the results on unique solvability of the generalized Stokes resolvent equations as well as the existence of a bounded H -calculus for the associated Stokes operator...

A remark on the existence of steady Navier-Stokes flows in 2D semi-infinite channel involving the general outflow condition

H. Morimoto, H. Fujita (2001)

Mathematica Bohemica

Similarity:

We consider the steady Navier-Stokes equations in a 2-dimensional unbounded multiply connected domain Ω under the general outflow condition. Let T be a 2-dimensional straight channel × ( - 1 , 1 ) . We suppose that Ω { x 1 < 0 } is bounded and that Ω { x 1 > - 1 } = T { x 1 > - 1 } . Let V be a Poiseuille flow in T and μ the flux of V . We look for a solution which tends to V as x 1 . Assuming that the domain and the boundary data are symmetric with respect to the x 1 -axis, and that the axis intersects every component of the boundary, we have shown...

Consistent streamline residual-based artificial viscosity stabilization for numerical simulation of incompressible turbulent flow by isogeometric analysis

Bohumír Bastl, Marek Brandner, Kristýna Slabá, Eva Turnerová (2022)

Applications of Mathematics

Similarity:

In this paper, we propose a new stabilization technique for numerical simulation of incompressible turbulent flow by solving Reynolds-averaged Navier-Stokes equations closed by the SST k - ω turbulence model. The stabilization scheme is constructed such that it is consistent in the sense used in the finite element method, artificial diffusion is added only in the direction of convection and it is based on a purely nonlinear approach. We present numerical results obtained by our in-house...

Global existence of smooth solutions for the compressible viscous fluid flow with radiation in 3

Hyejong O, Hakho Hong, Jongsung Kim (2023)

Applications of Mathematics

Similarity:

This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in [ 0 , ) , provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.

Stability of oscillating boundary layers in rotating fluids

Nader Masmoudi, Frédéric Rousset (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to ε . This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.

Numerical comparison of unsteady compressible viscous flow in convergent channel

Pořízková, Petra, Kozel, Karel, Horáček, Jaromír

Similarity:

This study deals with a numerical solution of a 2D flows of a compressible viscous fluids in a convergent channel for low inlet airflow velocity. Three governing systems – Full system, Adiabatic system, Iso-energetic system b a s e d o n t h e N a v i e r - S t o k e s e q u a t i o n s f o r l a m i n a r f l o w a r e t e s t e d . T h e n u m e r i c a l s o l u t i o n i s r e a l i z e d b y f i n i t e v o l u m e m e t h o d a n d t h e p r e d i c t o r - c o r r e c t o r M a c C o r m a c k s c h e m e w i t h J a m e s o n a r t i f i c i a l v i s c o s i t y u s i n g a g r i d o f q u a d r i l a t e r a l c e l l s . T h e u n s t e a d y g r i d o f q u a d r i l a t e r a l c e l l s i s c o n s i d e r e d i n t h e f o r m o f c o n s e r v a t i o n l a w s u s i n g A r b i t r a r y L a g r a n g i a n - E u l e r i a n m e t h o d . T h e n u m e r i c a l r e s u l t s , a c q u i r e d f r o m a d e v e l o p e d p r o g r a m , a r e p r e s e n t e d f o r i n l e t v e l o c i t y u=4.12 ms-1 a n d R e y n o l d s n u m b e r R e = 4 103 .

On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem

Hugo Beirão da Veiga (2009)

Journal of the European Mathematical Society

Similarity:

We establish regularity results up to the boundary for solutions to generalized Stokes and Navier–Stokes systems of equations in the stationary and evolutive cases. Generalized here means the presence of a shear dependent viscosity. We treat the case p 2 . Actually, we are interested in proving regularity results in L q ( Ω ) spaces for all the second order derivatives of the velocity and all the first order derivatives of the pressure. The main aim of the present paper is to extend our previous...

Global regular solutions to the Navier-Stokes equations in a cylinder

Wojciech M. Zajączkowski (2006)

Banach Center Publications

Similarity:

The existence and uniqueness of solutions to the Navier-Stokes equations in a cylinder Ω and with boundary slip conditions is proved. Assuming that the azimuthal derivative of cylindrical coordinates and azimuthal coordinate of the initial velocity and the external force are sufficiently small we prove long time existence of regular solutions such that the velocity belongs to W 5 / 2 2 , 1 ( Ω × ( 0 , T ) ) and the gradient of the pressure to L 5 / 2 ( Ω × ( 0 , T ) ) . We prove the existence of solutions without any restrictions on the...

THE Navier-stokes flow around a rotating obstacle with time-dependent body force

Toshiaki Hishida (2009)

Banach Center Publications

Similarity:

We study the motion of a viscous incompressible fluid filling the whole three-dimensional space exterior to a rigid body, that is rotating with constant angular velocity ω, under the action of external force f. By using a frame attached to the body, the equations are reduced to (1.1) in a fixed exterior domain D. Given f = divF with F B U C ( ; L 3 / 2 , ( D ) ) , we consider this problem in D × ℝ and prove that there exists a unique solution u B U C ( ; L 3 , ( D ) ) when F and |ω| are sufficiently small. If, in particular, the external...

Global existence of solutions for incompressible magnetohydrodynamic equations

Wisam Alame, W. M. Zajączkowski (2004)

Applicationes Mathematicae

Similarity:

Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to W p 2 , 1 ( Ω × ( 0 , T ) ) and the pressure q satisfies q L p ( Ω × ( 0 , T ) ) for p ≥ 7/3.

The Leray problem for 2D inhomogeneous fluids

Farid Ammar-Khodja, Marcelo M. Santos (2005)

Banach Center Publications

Similarity:

We formulate the Leray problem for inhomogeneous fluids in two dimensions and outline the proof of the existence of a solution. There are two kinds of results depending on whether the given value for the density is a continuous function or only an L function. In the former case, the given densities are attained in the sense of uniform convergence and in the latter with respect to weak-* convergence.

Some linear parabolic system in Besov spaces

Ewa Zadrzyńska, Wojciech M. Zajączkowski (2008)

Banach Center Publications

Similarity:

We study the solvability in anisotropic Besov spaces B p , q σ / 2 , σ ( Ω T ) , σ ∈ ℝ₊, p,q ∈ (1,∞) of an initial-boundary value problem for the linear parabolic system which arises in the study of the compressible Navier-Stokes system with boundary slip conditions. The proof of existence of a unique solution in B p , q σ / 2 + 1 , σ + 2 ( Ω T ) is divided into three steps: 1° First the existence of solutions to the problem with vanishing initial conditions is proved by applying the Paley-Littlewood decomposition and some ideas of Triebel....

Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid

Aneta Wróblewska-Kamińska (2023)

Archivum Mathematicum

Similarity:

We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter ε 0 , the Froude number proportional to ε and when the fluid occupies large domain with spatial obstacle of rough surface varying when ε 0 . The limit velocity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we...