The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Drinfeld-Sokolov hierarchies on truncated current Lie algebras”

The construction of 3-Lie 2-algebras

Chunyue Wang, Qingcheng Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.

Restricted and quasi-toral restricted Lie-Rinehart algebras

Bing Sun, Liangyun Chen (2015)

Open Mathematics

Similarity:

In this paper, we introduce the definition of restrictable Lie-Rinehart algebras, the concept of restrictability is by far more tractable than that of a restricted Lie-Rinehart algebra. Moreover, we obtain some properties of p-mappings and restrictable Lie-Rinehart algebras. Finally, we give some sufficient conditions for the commutativity of quasi-toral restricted Lie-Rinehart algebras and study how a quasi-toral restricted Lie-Rinehart algebra with zero center and of minimal dimension...

Family algebras.

Kirillov, A.A. (2000)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Similarity:

On maximal subalgebras of central simple Malcev algebras.

Alberto C. Elduque Palomo (1986)

Extracta Mathematicae

Similarity:

In this paper the structure of the maximal elements of the lattice of subalgebras of central simple non-Lie Malcev algebras is considered. Such maximal subalgebras are studied in two ways: first by using theoretical results concerning Malcev algebras, and second by using the close connection between these simple non-Lie Malcev algebras and the Cayley-Dickson algebras, which have been extensively studied (see [4]).

The existence of c-covers of Lie algebras

Mohammad Reza Rismanchian (2015)

Colloquium Mathematicae

Similarity:

The aim of this work is to obtain the structure of c-covers of c-capable Lie algebras. We also obtain some results on the existence of c-covers and, under some assumptions, we prove the absence of c-covers of Lie algebras.

Some examples of nil Lie algebras

Ivan P. Shestakov, Efim Zelmanov (2008)

Journal of the European Mathematical Society

Similarity:

Generalizing Petrogradsky’s construction, we give examples of infinite-dimensional nil Lie algebras of finite Gelfand–Kirillov dimension over any field of positive characteristic.

Poisson-Lie groupoids and the contraction procedure

Kenny De Commer (2015)

Banach Center Publications

Similarity:

On the level of Lie algebras, the contraction procedure is a method to create a new Lie algebra from a given Lie algebra by rescaling generators and letting the scaling parameter tend to zero. One of the most well-known examples is the contraction from 𝔰𝔲(2) to 𝔢(2), the Lie algebra of upper-triangular matrices with zero trace and purely imaginary diagonal. In this paper, we will consider an extension of this contraction by taking also into consideration the natural bialgebra structures...

Quasi-trace functions on Lie algebras and their applications to 3-Lie algebras

Youjun Tan, Senrong Xu (2022)

Czechoslovak Mathematical Journal

Similarity:

We introduce the notion of quasi-trace functions on Lie algebras. As applications we study realizations of 3-dimensional and 4-dimensional 3-Lie algebras. Some comparison results on cohomologies of 3-Lie algebras and Leibniz algebras arising from quasi-trace functions are obtained.

Self-similar Lie algebras

Laurent Bartholdi (2015)

Journal of the European Mathematical Society

Similarity:

We give a general definition of branched, self-similar Lie algebras, and show that important examples of Lie algebras fall into that class. We give sufficient conditions for a self-similar Lie algebra to be nil, and prove in this manner that the self-similar algebras associated with Grigorchuk’s and Gupta–Sidki’s torsion groups are nil as well as self-similar.We derive the same results for a class of examples constructed by Petrogradsky, Shestakov and Zelmanov.