Displaying similar documents to “On the theory of remediability”

On semigroups with an infinitesimal operator

Jolanta Olko (2005)

Annales Polonici Mathematici

Similarity:

Let F t : t 0 be an iteration semigroup of linear continuous set-valued functions. If the semigroup has an infinitesimal operator then it is a uniformly continuous semigroup majorized by an exponential semigroup. Moreover, for sufficiently small t every linear selection of F t is invertible and there exists an exponential semigroup f t : t 0 of linear continuous selections f t of F t .

On the K-theory of the C * -algebra generated by the left regular representation of an Ore semigroup

Joachim Cuntz, Siegfried Echterhoff, Xin Li (2015)

Journal of the European Mathematical Society

Similarity:

We compute the K -theory of C * -algebras generated by the left regular representation of left Ore semigroups satisfying certain regularity conditions. Our result describes the K -theory of these semigroup C * -algebras in terms of the K -theory for the reduced group C * -algebras of certain groups which are typically easier to handle. Then we apply our result to specific semigroups from algebraic number theory.

The algebra of the subspace semigroup of M ( q )

Jan Okniński (2002)

Colloquium Mathematicae

Similarity:

The semigroup S = S ( M ( q ) ) of subspaces of the algebra M ( q ) of 2 × 2 matrices over a finite field q is studied. The ideal structure of S, the regular -classes of S and the structure of the complex semigroup algebra ℂ[S] are described.

On a probabilistic problem on finite semigroups

Attila Nagy, Csaba Tóth (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We deal with the following problem: how does the structure of a finite semigroup S depend on the probability that two elements selected at random from S , with replacement, define the same inner right translation of S . We solve a subcase of this problem. As the main result of the paper, we show how to construct not necessarily finite medial semigroups in which the index of the kernel of the right regular representation equals two.

Is A - 1 an infinitesimal generator?

Hans Zwart (2007)

Banach Center Publications

Similarity:

In this paper we study the question whether A - 1 is the infinitesimal generator of a bounded C₀-semigroup if A generates a bounded C₀-semigroup. If the semigroup generated by A is analytic and sectorially bounded, then the same holds for the semigroup generated by A - 1 . However, we construct a contraction semigroup with growth bound minus infinity for which A - 1 does not generate a bounded semigroup. Using this example we construct an infinitesimal generator of a bounded semigroup for which its...

Inverses of generators of nonanalytic semigroups

Ralph deLaubenfels (2009)

Studia Mathematica

Similarity:

Suppose A is an injective linear operator on a Banach space that generates a uniformly bounded strongly continuous semigroup e t A t 0 . It is shown that A - 1 generates an O ( 1 + τ ) A ( 1 - A ) - 1 -regularized semigroup. Several equivalences for A - 1 generating a strongly continuous semigroup are given. These are used to generate sufficient conditions on the growth of e t A t 0 , on subspaces, for A - 1 generating a strongly continuous semigroup, and to show that the inverse of -d/dx on the closure of its image in L¹([0,∞)) does not generate...

A local Landau type inequality for semigroup orbits

Gerd Herzog, Peer Christian Kunstmann (2014)

Studia Mathematica

Similarity:

Given a strongly continuous semigroup ( S ( t ) ) t 0 on a Banach space X with generator A and an element f ∈ D(A²) satisfying | | S ( t ) f | | e - ω t | | f | | and | | S ( t ) A ² f | | e - ω t | | A ² f | | for all t ≥ 0 and some ω > 0, we derive a Landau type inequality for ||Af|| in terms of ||f|| and ||A²f||. This inequality improves on the usual Landau inequality that holds in the case ω = 0.

Operator theoretic properties of semigroups in terms of their generators

S. Blunck, L. Weis (2001)

Studia Mathematica

Similarity:

Let ( T t ) be a C₀ semigroup with generator A on a Banach space X and let be an operator ideal, e.g. the class of compact, Hilbert-Schmidt or trace class operators. We show that the resolvent R(λ,A) of A belongs to if and only if the integrated semigroup S t : = 0 t T s d s belongs to . For analytic semigroups, S t implies T t , and in this case we give precise estimates for the growth of the -norm of T t (e.g. the trace of T t ) in terms of the resolvent growth and the imbedding D(A) ↪ X.

Presentations for subsemigroups of P D n

Abdullahi Umar (2019)

Czechoslovak Mathematical Journal

Similarity:

Let [ n ] = { 1 , ... , n } be an n -chain. We give presentations for the following transformation semigroups: the semigroup of full order-decreasing mappings of [ n ] , the semigroup of partial one-to-one order-decreasing mappings of [ n ] , the semigroup of full order-preserving and order-decreasing mappings of [ n ] , the semigroup of partial one-to-one order-preserving and order-decreasing mappings of [ n ] , and the semigroup of partial order-preserving and order-decreasing mappings of [ n ] .

Spaces of multipliers and their preduals for the order multiplication on [0, 1]

Savita Bhatnagar, H. L. Vasudeva (2002)

Colloquium Mathematicae

Similarity:

Let I = [0, 1] be the compact topological semigroup with max multiplication and usual topology. C(I), L p ( I ) , 1 ≤ p ≤ ∞, are the associated Banach algebras. The aim of the paper is to characterise H o m C ( I ) ( L r ( I ) , L p ( I ) ) and their preduals.

On some free semigroups, generated by matrices

Piotr Słanina (2015)

Czechoslovak Mathematical Journal

Similarity:

Let A = 1 2 0 1 , B λ = 1 0 λ 1 . We call a complex number λ “semigroup free“ if the semigroup generated by A and B λ is free and “free” if the group generated by A and B λ is free. First families of semigroup free λ ’s were described by J. L. Brenner, A. Charnow (1978). In this paper we enlarge the set of known semigroup free λ ’s. To do it, we use a new version of “Ping-Pong Lemma” for semigroups embeddable in groups. At the end we present most of the known results related to semigroup free and free numbers in a common...

On upper triangular nonnegative matrices

Yizhi Chen, Xian Zhong Zhao, Zhongzhu Liu (2015)

Czechoslovak Mathematical Journal

Similarity:

We first investigate factorizations of elements of the semigroup S of upper triangular matrices with nonnegative entries and nonzero determinant, provide a formula for ρ ( S ) , and, given A S , also provide formulas for l ( A ) , L ( A ) and ρ ( A ) . As a consequence, open problem 2 and problem 4 presented in N. Baeth et al. (2011), are partly answered. Secondly, we study the semigroup of upper triangular matrices with only positive integral entries, compute some invariants of such semigroup, and also partly answer...

The covariety of perfect numerical semigroups with fixed Frobenius number

María Ángeles Moreno-Frías, José Carlos Rosales (2024)

Czechoslovak Mathematical Journal

Similarity:

Let S be a numerical semigroup. We say that h S is an isolated gap of S if { h - 1 , h + 1 } S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m ( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family 𝒞 of numerical semigroups that fulfills the following conditions: there exists the minimum of 𝒞 , the intersection of two elements of 𝒞 is again an element of 𝒞 , and S { m ( S ) } 𝒞 for all S 𝒞 such that S min ( 𝒞 ) . We prove that the set 𝒫 ( F ) = { S : S is a perfect numerical semigroup...

Analytic semigroups on vector valued noncommutative L p -spaces

Cédric Arhancet (2013)

Studia Mathematica

Similarity:

We give sufficient conditions on an operator space E and on a semigroup of operators on a von Neumann algebra M to obtain a bounded analytic or R-analytic semigroup ( ( T I d E ) t 0 on the vector valued noncommutative L p -space L p ( M , E ) . Moreover, we give applications to the H ( Σ θ ) functional calculus of the generators of these semigroups, generalizing some earlier work of M. Junge, C. Le Merdy and Q. Xu.

On left ϕ -biflat Banach algebras

Amir Sahami, Mehdi Rostami, Abdolrasoul Pourabbas (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the notion of left ϕ -biflatness for Segal algebras and semigroup algebras. We show that the Segal algebra S ( G ) is left ϕ -biflat if and only if G is amenable. Also we characterize left ϕ -biflatness of semigroup algebra l 1 ( S ) in terms of biflatness, when S is a Clifford semigroup.

Some model theory of SL(2,ℝ)

Jakub Gismatullin, Davide Penazzi, Anand Pillay (2015)

Fundamenta Mathematicae

Similarity:

We study the action of G = SL(2,ℝ), viewed as a group definable in the structure M = (ℝ,+,×), on its type space S G ( M ) . We identify a minimal closed G-flow I and an idempotent r ∈ I (with respect to the Ellis semigroup structure * on S G ( M ) ). We also show that the “Ellis group” (r*I,*) is nontrivial, in fact it is the group with two elements, yielding a negative answer to a question of Newelski.

Growth of semigroups in discrete and continuous time

Alexander Gomilko, Hans Zwart, Niels Besseling (2011)

Studia Mathematica

Similarity:

We show that the growth rates of solutions of the abstract differential equations ẋ(t) = Ax(t), ( t ) = A - 1 x ( t ) , and the difference equation x d ( n + 1 ) = ( A + I ) ( A - I ) - 1 x d ( n ) are closely related. Assuming that A generates an exponentially stable semigroup, we show that on a general Banach space the lowest growth rate of the semigroup ( e A - 1 t ) t 0 is O(∜t), and for ( ( A + I ) ( A - I ) - 1 ) it is O(∜n). The similarity in growth holds for all Banach spaces. In particular, for Hilbert spaces the best estimates are O(log(t)) and O(log(n)), respectively. Furthermore,...

Semigroups generated by convex combinations of several Feller generators in models of mathematical biology

Adam Bobrowski, Radosław Bogucki (2008)

Studia Mathematica

Similarity:

Let be a locally compact Hausdorff space. Let A i , i = 0,1,...,N, be generators of Feller semigroups in C₀() with related Feller processes X i = X i ( t ) , t 0 and let α i , i = 0,...,N, be non-negative continuous functions on with i = 0 N α i = 1 . Assume that the closure A of k = 0 N α k A k defined on i = 0 N ( A i ) generates a Feller semigroup T(t), t ≥ 0 in C₀(). A natural interpretation of a related Feller process X = X(t), t ≥ 0 is that it evolves according to the following heuristic rules: conditional on being at a point p ∈ , with probability...