Displaying similar documents to “The Lindelöf property and σ-fragmentability”

The Lindelöf property in Banach spaces

B. Cascales, I. Namioka, J. Orihuela (2003)

Studia Mathematica

Similarity:

A topological space (T,τ) is said to be fragmented by a metric d on T if each non-empty subset of T has non-empty relatively open subsets of arbitrarily small d-diameter. The basic theorem of the present paper is the following. Let (M,ϱ) be a metric space with ϱ bounded and let D be an arbitrary index set. Then for a compact subset K of the product space M D the following four conditions are equivalent: (i) K is fragmented by d D , where, for each S ⊂ D, d S ( x , y ) = s u p ϱ ( x ( t ) , y ( t ) ) : t S . (ii) For each countable subset...

On the complexity of subspaces of S ω

Carlos Uzcátegui (2003)

Fundamenta Mathematicae

Similarity:

Let (X,τ) be a countable topological space. We say that τ is an analytic (resp. Borel) topology if τ as a subset of the Cantor set 2 X (via characteristic functions) is an analytic (resp. Borel) set. For example, the topology of the Arkhangel’skiĭ-Franklin space S ω is F σ δ . In this paper we study the complexity, in the sense of the Borel hierarchy, of subspaces of S ω . We show that S ω has subspaces with topologies of arbitrarily high Borel rank and it also has subspaces with a non-Borel topology....

On certain subclasses of analytic functions associated with the Carlson–Shaffer operator

Jagannath Patel, Ashok Kumar Sahoo (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The object of the present paper is to solve Fekete-Szego problem and determine the sharp upper bound to the second Hankel determinant for a certain class R λ ( a , c , A , B ) of analytic functions in the unit disk. We also investigate several majorization properties for functions belonging to a subclass R ˜ λ ( a , c , A , B ) of R λ ( a , c , A , B ) and related function classes. Relevant connections of the main results obtained here with those given by earlier workers on the subject are pointed out.

On Hattori spaces

A. Bouziad, E. Sukhacheva (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a subset A of the real line , Hattori space H ( A ) is a topological space whose underlying point set is the reals and whose topology is defined as follows: points from A are given the usual Euclidean neighborhoods while remaining points are given the neighborhoods of the Sorgenfrey line. In this paper, among other things, we give conditions on A which are sufficient and necessary for H ( A ) to be respectively almost Čech-complete, Čech-complete, quasicomplete, Čech-analytic and weakly separated...

Addition theorems for dense subspaces

Aleksander V. Arhangel'skii (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study topological spaces that can be represented as the union of a finite collection of dense metrizable subspaces. The assumption that the subspaces are dense in the union plays a crucial role below. In particular, Example 3.1 shows that a paracompact space X which is the union of two dense metrizable subspaces need not be a p -space. However, if a normal space X is the union of a finite family μ of dense subspaces each of which is metrizable by a complete metric, then X is also metrizable...

Maximum modulus in a bidisc of analytic functions of bounded 𝐋 -index and an analogue of Hayman’s theorem

Andriy Bandura, Nataliia Petrechko, Oleh Skaskiv (2018)

Mathematica Bohemica

Similarity:

We generalize some criteria of boundedness of 𝐋 -index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of ( p + 1 ) th partial derivative by lower order partial derivatives (analogue of Hayman’s theorem).

More reflections on compactness

Lúcia R. Junqueira, Franklin D. Tall (2003)

Fundamenta Mathematicae

Similarity:

We consider the question of when X M = X , where X M is the elementary submodel topology on X ∩ M, especially in the case when X M is compact.

Divisors in global analytic sets

Francesca Acquistapace, A. Díaz-Cano (2011)

Journal of the European Mathematical Society

Similarity:

We prove that any divisor Y of a global analytic set X n has a generic equation, that is, there is an analytic function vanishing on Y with multiplicity one along each irreducible component of Y . We also prove that there are functions with arbitrary multiplicities along Y . The main result states that if X is pure dimensional, Y is locally principal, X / Y is not connected and Y represents the zero class in H q - 1 ( X , 2 ) then the divisor Y is globally principal.

Properties of functions concerned with Caratheodory functions

Mamoru Nunokawa, Emel Yavuz Duman, Shigeyoshi Owa (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let 𝒫 n denote the class of analytic functions p ( z ) of the form p ( z ) = 1 + c n z n + c n + 1 z n + 1 + in the open unit disc 𝕌 . Applying the result by S. S. Miller and P. T. Mocanu (J. Math. Anal. Appl. 65 (1978), 289-305), some interesting properties for p ( z ) concerned with Caratheodory functions are discussed. Further, some corollaries of the results concerned with the result due to M. Obradovic and S. Owa (Math. Nachr. 140 (1989), 97-102) are shown.

On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact...

A note on star Lindelöf, first countable and normal spaces

Wei-Feng Xuan (2017)

Mathematica Bohemica

Similarity:

A topological space X is said to be star Lindelöf if for any open cover 𝒰 of X there is a Lindelöf subspace A X such that St ( A , 𝒰 ) = X . The “extent” e ( X ) of X is the supremum of the cardinalities of closed discrete subsets of X . We prove that under V = L every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under MA + ¬ CH , which shows that a star Lindelöf, first countable and normal space may not have countable extent.

A condition equivalent to uniform ergodicity

Maria Elena Becker (2005)

Studia Mathematica

Similarity:

Let T be a linear operator on a Banach space X with s u p | | T / n w | | < for some 0 ≤ w < 1. We show that the following conditions are equivalent: (i) n - 1 k = 0 n - 1 T k converges uniformly; (ii) c l ( I - T ) X = z X : l i m n k = 1 n T k z / k e x i s t s .

A nice subclass of functionally countable spaces

Vladimir Vladimirovich Tkachuk (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is functionally countable if f ( X ) is countable for any continuous function f : X . We will call a space X exponentially separable if for any countable family of closed subsets of X , there exists a countable set A X such that A 𝒢 whenever 𝒢 and 𝒢 . Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable...

Non-normality points and nice spaces

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

J. Terasawa in " β X - { p } are non-normal for non-discrete spaces X " (2007) and the author in “On non-normality points and metrizable crowded spaces” (2007), independently showed for any metrizable crowded space X that each point p of its Čech–Stone remainder X * is a non-normality point of β X . We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space.