The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The Suslinian number and other cardinal invariants of continua”

Monotone retractions and depth of continua

Janusz Jerzy Charatonik, Panayotis Spyrou (1994)

Archivum Mathematicum

Similarity:

It is shown that for every two countable ordinals α and β with α > β there exist λ -dendroids X and Y whose depths are α and β respectively, and a monotone retraction from X onto Y . Moreover, the continua X and Y can be either both arclike or both fans.

Continua with unique symmetric product

José G. Anaya, Enrique Castañeda-Alvarado, Alejandro Illanes (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a metric continuum. Let F n ( X ) denote the hyperspace of nonempty subsets of X with at most n elements. We say that the continuum X has unique hyperspace F n ( X ) provided that the following implication holds: if Y is a continuum and F n ( X ) is homeomorphic to F n ( Y ) , then X is homeomorphic to Y . In this paper we prove the following results: (1) if X is an indecomposable continuum such that each nondegenerate proper subcontinuum of X is an arc, then X has unique hyperspace F 2 ( X ) , and (2) let X be an arcwise...

On indecomposability and composants of chaotic continua

Hisao Kato (1996)

Fundamenta Mathematicae

Similarity:

A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x,y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that d ( f n ( x ) , f n ( y ) ) > c . A homeomorphism f: X → X is continuum-wise expansive if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer n ∈ ℤ such that d i a m i f n ( A ) > c . Clearly, every expansive homeomorphism is continuum-wise expansive, but the converse assertion is not true. In [6], we defined the notion of chaotic continua...