Displaying similar documents to “On an analytic approach to the Fatou conjecture”

On prime values of reducible quadratic polynomials

W. Narkiewicz, T. Pezda (2002)

Colloquium Mathematicae

Similarity:

It is shown that Dickson’s Conjecture about primes in linear polynomials implies that if f is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every r there exists an integer N r such that the polynomial f ( X ) / N r represents at least r distinct primes.

Another look at real quadratic fields of relative class number 1

Debopam Chakraborty, Anupam Saikia (2014)

Acta Arithmetica

Similarity:

The relative class number H d ( f ) of a real quadratic field K = ℚ (√m) of discriminant d is defined to be the ratio of the class numbers of f and K , where K denotes the ring of integers of K and f is the order of conductor f given by + f K . R. Mollin has shown recently that almost all real quadratic fields have relative class number 1 for some conductor. In this paper we give a characterization of real quadratic fields with relative class number 1 through an elementary approach considering the...

Sumsets in quadratic residues

I. D. Shkredov (2014)

Acta Arithmetica

Similarity:

We describe all sets A p which represent the quadratic residues R p in the sense that R = A + A or R = A ⨣ A. Also, we consider the case of an approximate equality R ≈ A + A and R ≈ A ⨣ A and prove that A is then close to a perfect difference set.

Positivity of quadratic base change L -functions

Hervé Jacquet, Chen Nan (2001)

Bulletin de la Société Mathématique de France

Similarity:

We show that certain quadratic base change L -functions for Gl ( 2 ) are non-negative at their center of symmetry.

The factorization of f ( x ) x n + g ( x ) with f ( x ) monic and of degree 2 .

Joshua Harrington, Andrew Vincent, Daniel White (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper we investigate the factorization of the polynomials f ( x ) x n + g ( x ) [ x ] in the special case where f ( x ) is a monic quadratic polynomial with negative discriminant. We also mention similar results in the case that f ( x ) is monic and linear.

Exponent of class group of certain imaginary quadratic fields

Kalyan Chakraborty, Azizul Hoque (2020)

Czechoslovak Mathematical Journal

Similarity:

Let n > 1 be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form x 2 - 2 y n whose ideal class group has an element of order n . This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.

Minimal 𝒮 -universality criteria may vary in size

Noam D. Elkies, Daniel M. Kane, Scott Duke Kominers (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this note, we give simple examples of sets 𝒮 of quadratic forms that have minimal 𝒮 -universality criteria of multiple cardinalities. This answers a question of Kim, Kim, and Oh [KKO05] in the negative.

Quadratic differentials ( A ( z - a ) ( z - b ) / ( z - c ) 2 ) d z 2 and algebraic Cauchy transform

Mohamed Jalel Atia, Faouzi Thabet (2016)

Czechoslovak Mathematical Journal

Similarity:

We discuss the representability almost everywhere (a.e.) in of an irreducible algebraic function as the Cauchy transform of a signed measure supported on a finite number of compact semi-analytic curves and a finite number of isolated points. This brings us to the study of trajectories of the particular family of quadratic differentials A ( z - a ) ( z - b ) ( z - c ) - 2 d z 2 . More precisely, we give a necessary and sufficient condition on the complex numbers a and b for these quadratic differentials to have finite critical...

Isometries of quadratic spaces

Eva Bayer-Fluckiger (2015)

Journal of the European Mathematical Society

Similarity:

Let k be a global field of characteristic not 2, and let f k [ X ] be an irreducible polynomial. We show that a non-degenerate quadratic space has an isometry with minimal polynomial f if and only if such an isometry exists over all the completions of k . This gives a partial answer to a question of Milnor.

Approximation of sets defined by polynomials with holomorphic coefficients

Marcin Bilski (2012)

Annales Polonici Mathematici

Similarity:

Let X be an analytic set defined by polynomials whose coefficients a , . . . , a s are holomorphic functions. We formulate conditions on sequences a 1 , ν , . . . , a s , ν of holomorphic functions converging locally uniformly to a , . . . , a s , respectively, such that the sequence X ν of sets obtained by replacing a j ’s by a j , ν ’s in the polynomials converges to X.