Displaying similar documents to “Global existence of solutions to a chemotaxis system with volume filling effect”

The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below

Tomasz Cieślak (2006)

Banach Center Publications

Similarity:

In [2] we proved two kinds of mechanisms of preventing the blow up in a quasilinear non-uniformly parabolic Keller-Segel systems. One of them was a priori boundedness from below of the Lyapunov functional. In fact, we were able to present a condition under which the Lyapunov functional is bounded from below and a solution exists globally. In the present paper we prove that whenever the Lyapunov functional is bounded from below the solution exists globally.

Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source

Ji Liu, Jia-Shan Zheng (2015)

Czechoslovak Mathematical Journal

Similarity:

We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of...

Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems

Sachiko Ishida, Tomomi Yokota (2023)

Archivum Mathematicum

Similarity:

This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.

Instantaneous shrinking of the support for solutions to certain parabolic equations and systems

Anatolii S. Kalashnikov (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

The paper contains conditions ensuring instantaneous shrinking of the support for solutions to semilinear parabolic equations with compactly supported coefficients of nonlinear terms and reaction-diffusion systems.

Remarks on blow up time for solutions of a nonlinear diffusion system with time dependent coefficients

Marras, M. (2011)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 35K55, 35K60. We investigate the blow-up of the solutions to a nonlinear parabolic system with Robin boundary conditions and time dependent coefficients. We derive sufficient conditions on the nonlinearities and the initial data in order to obtain explicit lower and upper bounds for the blow up time t*.

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

Similarity:

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.