Displaying similar documents to “Cycle-finite algebras with almost all indecomposable modules of projective or injective dimension at most one”

Directing components for quasitilted algebras

Flávio Coelho (1999)

Colloquium Mathematicae

Similarity:

We show here that a directing component of the Auslander-Reiten quiver of a quasitilted algebra is either postprojective or preinjective or a connecting component.

A note on quasitilted algebras

Andrzej Skowroński, Adam Skowyrski (2014)

Colloquium Mathematicae

Similarity:

We provide a characterization of artin algebras without chains of nonzero homomorphisms between indecomposable finitely generated modules starting with an injective module and ending with a projective module.

On wings of the Auslander-Reiten quivers of selfinjective algebras

Marta Kwiecień, Andrzej Skowroński (2005)

Colloquium Mathematicae

Similarity:

We give necessary and sufficient conditions for a wing of an Auslander-Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length ≥ 3 is obtained.

Tilting slice modules over minimal 2-fundamental algebras

Zygmunt Pogorzały, Karolina Szmyt (2008)

Colloquium Mathematicae

Similarity:

A class of finite-dimensional algebras whose Auslander-Reiten quivers have starting but not generalized standard components is investigated. For these components the slices whose slice modules are tilting are considered. Moreover, the endomorphism algebras of tilting slice modules are characterized.

Cycle-finite algebras of semiregular type

Jerzy Białkowski, Andrzej Skowroński, Adam Skowyrski, Paweł Wiśniewski (2012)

Colloquium Mathematicae

Similarity:

We describe the structure of artin algebras for which all cycles of indecomposable finitely generated modules are finite and all Auslander-Reiten components are semiregular.

Indecomposable modules in coils

Piotr Malicki, Andrzej Skowroński, Bertha Tomé (2002)

Colloquium Mathematicae

Similarity:

We describe the structure of all indecomposable modules in standard coils of the Auslander-Reiten quivers of finite-dimensional algebras over an algebraically closed field. We prove that the supports of such modules are obtained from algebras with sincere standard stable tubes by adding braids of two linear quivers. As an application we obtain a complete classification of non-directing indecomposable modules over all strongly simply connected algebras of polynomial growth.

Euclidean components for a class of self-injective algebras

Sarah Scherotzke (2009)

Colloquium Mathematicae

Similarity:

We determine the length of composition series of projective modules of G-transitive algebras with an Auslander-Reiten component of Euclidean tree class. We thereby correct and generalize a result of Farnsteiner [Math. Nachr. 202 (1999)]. Furthermore we show that modules with certain length of composition series are periodic. We apply these results to G-transitive blocks of the universal enveloping algebras of restricted p-Lie algebras and prove that G-transitive principal blocks only...

On two tame algebras with super-decomposable pure-injective modules

Stanisław Kasjan, Grzegorz Pastuszak (2011)

Colloquium Mathematicae

Similarity:

Let k be a field of characteristic different from 2. We consider two important tame non-polynomial growth algebras: the incidence k-algebra of the garland 𝒢₃ of length 3 and the incidence k-algebra of the enlargement of the Nazarova-Zavadskij poset 𝒩 𝓩 by a greatest element. We show that if Λ is one of these algebras, then there exists a special family of pointed Λ-modules, called an independent pair of dense chains of pointed modules. Hence, by a result of Ziegler, Λ admits a super-decomposable...

Algebras standardly stratified in all orders

Fidel Hernández Advíncula, Eduardo do Nascimento Marcos (2007)

Colloquium Mathematicae

Similarity:

The aim of this work is to characterize the algebras which are standardly stratified with respect to any order of the simple modules. We show that such algebras are exactly the algebras with all idempotent ideals projective. We also deduce as a corollary a characterization of hereditary algebras, originally due to Dlab and Ringel.

On Auslander-Reiten translates in functorially finite subcategories and applications

K. Erdmann, D. Madsen, V. Miemietz (2010)

Colloquium Mathematicae

Similarity:

We consider functorially finite subcategories in module categories over Artin algebras. One main result provides a method, in the setup of bounded derived categories, to compute approximations and the end terms of relative Auslander-Reiten sequences. We also prove an Auslander-Reiten formula for the setting of functorially finite subcategories. Furthermore, we study the category of modules filtered by standard modules for certain quasi-hereditary algebras and we classify precisely when...