Carmichael numbers composed of primes from a Beatty sequence
William D. Banks, Aaron M. Yeager (2011)
Colloquium Mathematicae
Similarity:
Let α,β ∈ ℝ be fixed with α > 1, and suppose that α is irrational and of finite type. We show that there are infinitely many Carmichael numbers composed solely of primes from the non-homogeneous Beatty sequence . We conjecture that the same result holds true when α is an irrational number of infinite type.