The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Carmichael numbers composed of primes from a Beatty sequence”

Consecutive primes in tuples

William D. Banks, Tristan Freiberg, Caroline L. Turnage-Butterbaugh (2015)

Acta Arithmetica

Similarity:

In a stunning new advance towards the Prime k-Tuple Conjecture, Maynard and Tao have shown that if k is sufficiently large in terms of m, then for an admissible k-tuple ( x ) = g x + h j j = 1 k of linear forms in ℤ[x], the set ( n ) = g n + h j j = 1 k contains at least m primes for infinitely many n ∈ ℕ. In this note, we deduce that ( n ) = g n + h j j = 1 k contains at least m consecutive primes for infinitely many n ∈ ℕ. We answer an old question of Erdős and Turán by producing strings of m + 1 consecutive primes whose successive gaps δ 1 , . . . , δ m form an increasing...

Associated primes, integral closures and ideal topologies

Reza Naghipour (2006)

Colloquium Mathematicae

Similarity:

Let ⊆ be ideals of a Noetherian ring R, and let N be a non-zero finitely generated R-module. The set Q̅*(,N) of quintasymptotic primes of with respect to N was originally introduced by McAdam. Also, it has been shown by Naghipour and Schenzel that the set A * a ( , N ) : = n 1 A s s R R / ( ) a ( N ) of associated primes is finite. The purpose of this paper is to show that the topology on N defined by ( ) a ( N ) : R n 1 is finer than the topology defined by ( ) a ( N ) n 1 if and only if A * a ( , N ) is disjoint from the quintasymptotic primes of with respect to N. Moreover,...

Non-Wieferich primes in number fields and a b c -conjecture

Srinivas Kotyada, Subramani Muthukrishnan (2018)

Czechoslovak Mathematical Journal

Similarity:

Let K / be an algebraic number field of class number one and let 𝒪 K be its ring of integers. We show that there are infinitely many non-Wieferich primes with respect to certain units in 𝒪 K under the assumption of the a b c -conjecture for number fields.

Sums of positive density subsets of the primes

Kaisa Matomäki (2013)

Acta Arithmetica

Similarity:

We show that if A and B are subsets of the primes with positive relative lower densities α and β, then the lower density of A+B in the natural numbers is at least ( 1 - o ( 1 ) ) α / ( e γ l o g l o g ( 1 / β ) ) , which is asymptotically best possible. This improves results of Ramaré and Ruzsa and of Chipeniuk and Hamel. As in the latter work, the problem is reduced to a similar problem for subsets of * m using techniques of Green and Green-Tao. Concerning this new problem we show that, for any square-free m and any A , B * m of densities α...

Primefree shifted Lucas sequences

Lenny Jones (2015)

Acta Arithmetica

Similarity:

We say a sequence = ( s ) n 0 is primefree if |sₙ| is not prime for all n ≥ 0, and to rule out trivial situations, we require that no single prime divides all terms of . In this article, we focus on the particular Lucas sequences of the first kind, a = ( u ) n 0 , defined by u₀ = 0, u₁ = 1, and uₙ = aun-1 + un-2 for n≥2, where a is a fixed integer. More precisely, we show that for any integer a, there exist infinitely many integers k such that both of the shifted sequences a ± k are simultaneously primefree. This...

On a divisibility problem

Shichun Yang, Florian Luca, Alain Togbé (2019)

Mathematica Bohemica

Similarity:

Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

Truncatable primes and unavoidable sets of divisors

Artūras Dubickas (2006)

Acta Mathematica Universitatis Ostraviensis

Similarity:

We are interested whether there is a nonnegative integer u 0 and an infinite sequence of digits u 1 , u 2 , u 3 , in base b such that the numbers u 0 b n + u 1 b n - 1 + + u n - 1 b + u n , where n = 0 , 1 , 2 , , are all prime or at least do not have prime divisors in a finite set of prime numbers S . If any such sequence contains infinitely many elements divisible by at least one prime number p S , then we call the set S unavoidable with respect to b . It was proved earlier that unavoidable sets in base b exist if b { 2 , 3 , 4 , 6 } , and that no unavoidable set exists in base b = 5 . Now,...

Goldbach’s problem with primes in arithmetic progressions and in short intervals

Karin Halupczok (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Some mean value theorems in the style of Bombieri-Vinogradov’s theorem are discussed. They concern binary and ternary additive problems with primes in arithmetic progressions and short intervals. Nontrivial estimates for some of these mean values are given. As application inter alia, we show that for large odd n ¬ 1 ( 6 ) , Goldbach’s ternary problem n = p 1 + p 2 + p 3 is solvable with primes p 1 , p 2 in short intervals p i [ X i , X i + Y ] with X i θ i = Y , i = 1 , 2 , and θ 1 , θ 2 0 . 933 such that ( p 1 + 2 ) ( p 2 + 2 ) has at most 9 prime factors.

On prime values of reducible quadratic polynomials

W. Narkiewicz, T. Pezda (2002)

Colloquium Mathematicae

Similarity:

It is shown that Dickson’s Conjecture about primes in linear polynomials implies that if f is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every r there exists an integer N r such that the polynomial f ( X ) / N r represents at least r distinct primes.

On a recursive formula for the sequence of primes and applications to the twin prime problem

Giovanni Fiorito (2006)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper we give a recursive formula for the sequence of primes { p n } and apply it to find a necessary and sufficient condition in order that a prime number p n + 1 is equal to p n + 2 . Applications of previous results are given to evaluate the probability that p n + 1 is of the form p n + 2 ; moreover we prove that the limit of this probability is equal to zero as n goes to . Finally, for every prime p n we construct a sequence whose terms that are in the interval [ p n 2 - 2 , p n + 1 2 - 2 [ are the first terms of two twin primes. This...

Density of solutions to quadratic congruences

Neha Prabhu (2017)

Czechoslovak Mathematical Journal

Similarity:

A classical result in number theory is Dirichlet’s theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly k prime factors for k > 1 . Building upon a proof by E. M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree n x with k prime factors such that a fixed quadratic equation has exactly 2 k solutions modulo n . ...

Equicontinuity and Convergent Sequences in the Spaces C ' and M

Jan Kisyński (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Characterizations of equicontinuity and convergent sequences are given for the space C ' ( ) of rapidly decreasing distributions and the space M ( ) of slowly increasing infinitely differentiable functions.