Displaying similar documents to “Weak* convergence of iterates of Lasota-Mackey-Tyrcha operators”

Markov operators acting on Polish spaces

Tomasz Szarek (1997)

Annales Polonici Mathematici

Similarity:

We prove a new sufficient condition for the asymptotic stability of Markov operators acting on measures. This criterion is applied to iterated function systems.

Strong and weak stability of some Markov operators

Ryszard Rudnicki (2000)

Colloquium Mathematicae

Similarity:

An integral Markov operator P appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let μ and ν be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence ( P n μ - P n ν ) to 0 are given.

Applications of the Kantorovich-Rubinstein maximum principle in the theory of Markov semigroups

Henryk Gacki

Similarity:

We present new sufficient conditions for the asymptotic stability of Markov operators acting on the space of signed measures. Our results are based on two principles. The first one is the LaSalle invariance principle used in the theory of dynamical systems. The second is related to the Kantorovich-Rubinstein theorems concerning the properties of probability metrics. These criteria are applied to stochastically perturbed dynamical systems, a Poisson driven stochastic differential equation...

Markov operators on the space of vector measures; coloured fractals

Karol Baron, Andrzej Lasota (1998)

Annales Polonici Mathematici

Similarity:

We consider the family 𝓜 of measures with values in a reflexive Banach space. In 𝓜 we introduce the notion of a Markov operator and using an extension of the Fortet-Mourier norm we show some criteria of the asymptotic stability. Asymptotically stable Markov operators can be used to construct coloured fractals.

Asymptotic stability of a linear Boltzmann-type equation

Roksana Brodnicka, Henryk Gacki (2014)

Applicationes Mathematicae

Similarity:

We present a new necessary and sufficient condition for the asymptotic stability of Markov operators acting on the space of signed measures. The proof is based on some special properties of the total variation norm. Our method allows us to consider the Tjon-Wu equation in a linear form. More precisely a new proof of the asymptotic stability of a stationary solution of the Tjon-Wu equation is given.

A criterion of asymptotic stability for Markov-Feller e-chains on Polish spaces

Dawid Czapla (2012)

Annales Polonici Mathematici

Similarity:

Stettner [Bull. Polish Acad. Sci. Math. 42 (1994)] considered the asymptotic stability of Markov-Feller chains, provided the sequence of transition probabilities of the chain converges to an invariant probability measure in the weak sense and converges uniformly with respect to the initial state variable on compact sets. We extend those results to the setting of Polish spaces and relax the original assumptions. Finally, we present a class of Markov-Feller chains with a linear state space...

Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators

Małgorzata Pułka (2012)

Discussiones Mathematicae Probability and Statistics

Similarity:

We study different types of asymptotic behaviour in the set of (infinite dimensional) nonhomogeneous chains of stochastic operators acting on L¹(μ) spaces. In order to examine its structure we consider different norm and strong operator topologies. To describe the nature of the set of nonhomogeneous chains of Markov operators with a particular limit behaviour we use the category theorem of Baire. We show that the geometric structure of the set of those stochastic operators which have...

The uniqueness of invariant measures for Markov operators

Tomasz Szarek (2008)

Studia Mathematica

Similarity:

It is shown that Markov operators with equicontinuous dual operators which overlap supports have at most one invariant measure. In this way we extend the well known result proved for Markov operators with the strong Feller property by R. Z. Khas'minski.