Strong and weak stability of some Markov operators

Ryszard Rudnicki

Colloquium Mathematicae (2000)

  • Volume: 84/85, Issue: 1, page 255-263
  • ISSN: 0010-1354

Abstract

top
An integral Markov operator P appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let μ and ν be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence ( P n μ - P n ν ) to 0 are given.

How to cite

top

Rudnicki, Ryszard. "Strong and weak stability of some Markov operators." Colloquium Mathematicae 84/85.1 (2000): 255-263. <http://eudml.org/doc/210804>.

@article{Rudnicki2000,
abstract = {An integral Markov operator $P$ appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let $μ$ and $ν$ be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence $(P^\{n\}μ-P^\{n\}ν)$ to $0$ are given.},
author = {Rudnicki, Ryszard},
journal = {Colloquium Mathematicae},
keywords = {biomathematics; weak and strong convergence of measures; Markov operators},
language = {eng},
number = {1},
pages = {255-263},
title = {Strong and weak stability of some Markov operators},
url = {http://eudml.org/doc/210804},
volume = {84/85},
year = {2000},
}

TY - JOUR
AU - Rudnicki, Ryszard
TI - Strong and weak stability of some Markov operators
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 1
SP - 255
EP - 263
AB - An integral Markov operator $P$ appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let $μ$ and $ν$ be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence $(P^{n}μ-P^{n}ν)$ to $0$ are given.
LA - eng
KW - biomathematics; weak and strong convergence of measures; Markov operators
UR - http://eudml.org/doc/210804
ER -

References

top
  1. [1] M. F. Barnsley, Fractals Everywhere, Acad. Press, New York, 1988. 
  2. [2] K. Baron and A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math. 58 (1993), 161-175. Zbl0839.47021
  3. [3] C. J. K. Batty, Z. Brzeźniak and D. A. Greenfield, A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum, Studia Math. 121 (1996), 167-183. Zbl0862.47020
  4. [4] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, New York, 1969. 
  5. [5] S. R. Foguel, Harris operators, Israel J. Math. 33 (1979), 281-309. 
  6. [6] H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math. 51 (1990), 155-166. Zbl0721.34094
  7. [7] A. Iwanik, Baire category of mixing for stochastic operators, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 201-217. Zbl0764.60059
  8. [8] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228. Zbl0767.47012
  9. [9] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, New York, 1994. 
  10. [10] A. Lasota and M. C. Mackey, Global asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62. Zbl0529.92011
  11. [11] A. Lasota, M. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, ibid. 30 (1992), 775-800. Zbl0763.92001
  12. [12] M. Lin, Mixing for Markov operators, Z. Wahrsch. Verw. Gebiete 19 (1971), 231-242. Zbl0212.49301
  13. [13] K. Łoskot and R. Rudnicki, Sweeping of some integral operators, Bull. Polish Acad. Sci. Math. 37 (1989), 229-235. Zbl0767.47013
  14. [14] J. van Neerven, The Asymptotic Behaviour of a Semigroup of Linear Operators, Birkhäuser, Basel, 1996. Zbl0905.47001
  15. [15] E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, Cambridge Tracts in Math. 83, Cambridge Univ. Press, Cambridge, 1984. Zbl0551.60066
  16. [16] R. Rudnicki, Stability in L 1 of some integral operators, Integral Equations Operator Theory 24 (1996), 320-327. Zbl0843.47021
  17. [17] R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245-262. Zbl0838.47040
  18. [18] J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465-475. Zbl0716.92017
  19. [19] J. J. Tyson, Mini review: Size control of cell division, J. Theoret. Biol. 120 (1987), 381-391. 
  20. [20] J. J. Tyson and K. B. Hannsgen, Global asymptotic stability of the size distribution in probabilistic models of the cell cycle, J. Math. Biol. 22 (1985), 61-68. Zbl0558.92012
  21. [21] J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, ibid. 23 (1986), 231-246. Zbl0582.92020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.