Strong and weak stability of some Markov operators
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 1, page 255-263
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topRudnicki, Ryszard. "Strong and weak stability of some Markov operators." Colloquium Mathematicae 84/85.1 (2000): 255-263. <http://eudml.org/doc/210804>.
@article{Rudnicki2000,
abstract = {An integral Markov operator $P$ appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let $μ$ and $ν$ be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence $(P^\{n\}μ-P^\{n\}ν)$ to $0$ are given.},
author = {Rudnicki, Ryszard},
journal = {Colloquium Mathematicae},
keywords = {biomathematics; weak and strong convergence of measures; Markov operators},
language = {eng},
number = {1},
pages = {255-263},
title = {Strong and weak stability of some Markov operators},
url = {http://eudml.org/doc/210804},
volume = {84/85},
year = {2000},
}
TY - JOUR
AU - Rudnicki, Ryszard
TI - Strong and weak stability of some Markov operators
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 1
SP - 255
EP - 263
AB - An integral Markov operator $P$ appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let $μ$ and $ν$ be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence $(P^{n}μ-P^{n}ν)$ to $0$ are given.
LA - eng
KW - biomathematics; weak and strong convergence of measures; Markov operators
UR - http://eudml.org/doc/210804
ER -
References
top- [1] M. F. Barnsley, Fractals Everywhere, Acad. Press, New York, 1988.
- [2] K. Baron and A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math. 58 (1993), 161-175. Zbl0839.47021
- [3] C. J. K. Batty, Z. Brzeźniak and D. A. Greenfield, A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum, Studia Math. 121 (1996), 167-183. Zbl0862.47020
- [4] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, New York, 1969.
- [5] S. R. Foguel, Harris operators, Israel J. Math. 33 (1979), 281-309.
- [6] H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math. 51 (1990), 155-166. Zbl0721.34094
- [7] A. Iwanik, Baire category of mixing for stochastic operators, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 201-217. Zbl0764.60059
- [8] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228. Zbl0767.47012
- [9] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, New York, 1994.
- [10] A. Lasota and M. C. Mackey, Global asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62. Zbl0529.92011
- [11] A. Lasota, M. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, ibid. 30 (1992), 775-800. Zbl0763.92001
- [12] M. Lin, Mixing for Markov operators, Z. Wahrsch. Verw. Gebiete 19 (1971), 231-242. Zbl0212.49301
- [13] K. Łoskot and R. Rudnicki, Sweeping of some integral operators, Bull. Polish Acad. Sci. Math. 37 (1989), 229-235. Zbl0767.47013
- [14] J. van Neerven, The Asymptotic Behaviour of a Semigroup of Linear Operators, Birkhäuser, Basel, 1996. Zbl0905.47001
- [15] E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, Cambridge Tracts in Math. 83, Cambridge Univ. Press, Cambridge, 1984. Zbl0551.60066
- [16] R. Rudnicki, Stability in of some integral operators, Integral Equations Operator Theory 24 (1996), 320-327. Zbl0843.47021
- [17] R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245-262. Zbl0838.47040
- [18] J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465-475. Zbl0716.92017
- [19] J. J. Tyson, Mini review: Size control of cell division, J. Theoret. Biol. 120 (1987), 381-391.
- [20] J. J. Tyson and K. B. Hannsgen, Global asymptotic stability of the size distribution in probabilistic models of the cell cycle, J. Math. Biol. 22 (1985), 61-68. Zbl0558.92012
- [21] J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, ibid. 23 (1986), 231-246. Zbl0582.92020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.