Displaying similar documents to “On the asymptotic behavior of some counting functions, II”

On the asymptotic behavior of some counting functions

Maciej Radziejewski, Wolfgang A. Schmid (2005)

Colloquium Mathematicae

Similarity:

The investigation of certain counting functions of elements with given factorization properties in the ring of integers of an algebraic number field gives rise to combinatorial problems in the class group. In this paper a constant arising from the investigation of the number of algebraic integers with factorizations of at most k different lengths is investigated. It is shown that this constant is positive if k is greater than 1 and that it is also positive if k equals 1 and the class...

Periods of sets of lengths: a quantitative result and an associated inverse problem

Wolfgang A. Schmid (2008)

Colloquium Mathematicae

Similarity:

The investigation of quantitative aspects of non-unique factorizations in the ring of integers of an algebraic number field gives rise to combinatorial problems in the class group of this number field. In this paper we investigate the combinatorial problems related to the function 𝓟(H,𝓓,M)(x), counting elements whose sets of lengths have period 𝓓, for extreme choices of 𝓓. If the class group meets certain conditions, we obtain the value of an exponent in the asymptotic formula of...

The cycle-complete graph Ramsey number r(C₅,K₇)

Ingo Schiermeyer (2005)

Discussiones Mathematicae Graph Theory

Similarity:

The cycle-complete graph Ramsey number r(Cₘ,Kₙ) is the smallest integer N such that every graph G of order N contains a cycle Cₘ on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r(Cₘ,Kₙ) = (m-1)(n-1)+1 for all m ≥ n ≥ 3 (except r(C₃,K₃) = 6). This conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof for r(C₅,K₇) = 25.

Pancyclicity when each Cycle Must Pass Exactly k Hamilton Cycle Chords

Fatima Affif Chaouche, Carrie G. Rutherford, Robin W. Whitty (2015)

Discussiones Mathematicae Graph Theory

Similarity:

It is known that Θ(log n) chords must be added to an n-cycle to produce a pancyclic graph; for vertex pancyclicity, where every vertex belongs to a cycle of every length, Θ(n) chords are required. A possibly ‘intermediate’ variation is the following: given k, 1 ≤ k ≤ n, how many chords must be added to ensure that there exist cycles of every possible length each of which passes exactly k chords? For fixed k, we establish a lower bound of ∩(n1/k) on the growth rate.

Edge cycle extendable graphs

Terry A. McKee (2012)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is edge cycle extendable if every cycle C that is formed from edges and one chord of a larger cycle C⁺ is also formed from edges and one chord of a cycle C' of length one greater than C with V(C') ⊆ V(C⁺). Edge cycle extendable graphs are characterized by every block being either chordal (every nontriangular cycle has a chord) or chordless (no nontriangular cycle has a chord); equivalently, every chord of a cycle of length five or more has a noncrossing chord.

On hypergraphs of girth five.

Lazebnik, Felix, Verstraëte, Jacques (2003)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Disjoint 5-cycles in a graph

Hong Wang (2012)

Discussiones Mathematicae Graph Theory

Similarity:

We prove that if G is a graph of order 5k and the minimum degree of G is at least 3k then G contains k disjoint cycles of length 5.