Displaying similar documents to “The ideal (a) is not G δ generated”

C(X) vs. C(X) modulo its socle

F. Azarpanah, O. A. S. Karamzadeh, S. Rahmati (2008)

Colloquium Mathematicae

Similarity:

Let C F ( X ) be the socle of C(X). It is shown that each prime ideal in C ( X ) / C F ( X ) is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated points (resp. int Z(h) = ∅). It is proved that d i m ( C ( X ) / C F ( X ) ) d i m C ( X ) , where dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points....

A characterization of the meager ideal

Piotr Zakrzewski (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We give a classical proof of the theorem stating that the σ -ideal of meager sets is the unique σ -ideal on a Polish group, generated by closed sets which is invariant under translations and ergodic.

On the Noether exponent

Anna Stasica (2003)

Annales Polonici Mathematici

Similarity:

We obtain, in a simple way, an estimate for the Noether exponent of an ideal I without embedded components (i.e. we estimate the smallest number μ such that ( r a d I ) μ I ).

Calculation of the avoiding ideal for Σ 1 , 1

Tamás Terpai (2009)

Banach Center Publications

Similarity:

We calculate the mapping H * ( B O ; ) H * ( K 1 , 0 ; ) and obtain a generating system of its kernel. As a corollary, bounds on the codimension of fold maps from real projective spaces to Euclidean space are calculated and the rank of a singular bordism group is determined.

On wsq-primary ideals

Emel Aslankarayiğit Uğurlu, El Mehdi Bouba, Ünsal Tekir, Suat Koç (2023)

Czechoslovak Mathematical Journal

Similarity:

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R . The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 a b Q for some a , b R , then a 2 Q or b Q . Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero...

More remarks on the intersection ideal 𝒩

Tomasz Weiss (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove in ZFC that every 𝒩 additive set is 𝒩 additive, thus we solve Problem 20 from paper [Weiss T., A note on the intersection ideal 𝒩 , Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437-445] in the negative.

A co-ideal based identity-summand graph of a commutative semiring

S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let I be a strong co-ideal of a commutative semiring R with identity. Let Γ I ( R ) be a graph with the set of vertices S I ( R ) = { x R I : x + y I for some y R I } , where two distinct vertices x and y are adjacent if and only if x + y I . We look at the diameter and girth of this graph. Also we discuss when Γ I ( R ) is bipartite. Moreover, studies are done on the planarity, clique, and chromatic number of this graph. Examples illustrating the results are presented.

Wild primes of a self-equivalence of a number field

Alfred Czogała, Beata Rothkegel (2014)

Acta Arithmetica

Similarity:

Let K be a number field. Assume that the 2-rank of the ideal class group of K is equal to the 2-rank of the narrow ideal class group of K. Moreover, assume K has a unique dyadic prime and the class of is a square in the ideal class group of K. We prove that if ₁,...,ₙ are finite primes of K such that ∙ the class of i is a square in the ideal class group of K for every i ∈ 1,...,n, ∙ -1 is a local square at i for every nondyadic i , . . . , , then ₁,...,ₙ is the wild set of some self-equivalence...

More on the strongly 1-absorbing primary ideals of commutative rings

Ali Yassine, Mohammad Javad Nikmehr, Reza Nikandish (2024)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with identity. We study the concept of strongly 1-absorbing primary ideals which is a generalization of n -ideals and a subclass of 1 -absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if for all nonunit elements a , b , c R such that a b c I , it is either a b I or c 0 . Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings R over which every semi-primary ideal is strongly 1-absorbing primary, and rings R over which...

Eigenspaces of the ideal class group

Cornelius Greither, Radan Kučera (2014)

Annales de l’institut Fourier

Similarity:

The aim of this paper is to prove an analog of Gras’ conjecture for an abelian field F and an odd prime p dividing the degree [ F : ] assuming that the p -part of Gal ( F / ) group is cyclic.

Duality of measures of non-𝒜-compactness

Juan Manuel Delgado, Cándido Piñeiro (2015)

Studia Mathematica

Similarity:

Let be a Banach operator ideal. Based on the notion of -compactness in a Banach space due to Carl and Stephani, we deal with the notion of measure of non–compactness of an operator. We consider a map χ (respectively, n ) acting on the operators of the surjective (respectively, injective) hull of such that χ ( T ) = 0 (respectively, n ( T ) = 0 ) if and only if the operator T is -compact (respectively, injectively -compact). Under certain conditions on the ideal , we prove an equivalence inequality involving...

An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property

J. Cabello, E. Nieto (1998)

Studia Mathematica

Similarity:

C.-M. Cho and W. B. Johnson showed that if a subspace E of p , 1 < p < ∞, has the compact approximation property, then K(E) is an M-ideal in ℒ(E). We prove that for every r,s ∈ ]0,1] with r 2 + s 2 < 1 , the James space can be provided with an equivalent norm such that an arbitrary subspace E has the metric compact approximation property iff there is a norm one projection P on ℒ(E)* with Ker P = K(E)⊥ satisfying ∥⨍∥ ≥ r∥Pf∥ + s∥φ - Pf∥ ∀⨍ ∈ ℒ(E)*. A similar result is proved for subspaces of...