Displaying similar documents to “Estimates of Green functions and their applications for parabolic operators with singular potentials”

Boundary estimates for certain degenerate and singular parabolic equations

Benny Avelin, Ugo Gianazza, Sandro Salsa (2016)

Journal of the European Mathematical Society

Similarity:

We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic p -Laplacian equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part S T of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of...

The Wolff gradient bound for degenerate parabolic equations

Tuomo Kuusi, Giuseppe Mingione (2014)

Journal of the European Mathematical Society

Similarity:

The spatial gradient of solutions to non-homogeneous and degenerate parabolic equations of p -Laplacean type can be pointwise estimated by natural Wolff potentials of the right hand side measure.

On admissibility for parabolic equations in ℝⁿ

Martino Prizzi (2003)

Fundamenta Mathematicae

Similarity:

We consider the parabolic equation (P) u t - Δ u = F ( x , u ) , (t,x) ∈ ℝ₊ × ℝⁿ, and the corresponding semiflow π in the phase space H¹. We give conditions on the nonlinearity F(x,u), ensuring that all bounded sets of H¹ are π-admissible in the sense of Rybakowski. If F(x,u) is asymptotically linear, under appropriate non-resonance conditions, we use Conley’s index theory to prove the existence of nontrivial equilibria of (P) and of heteroclinic trajectories joining some of these equilibria. The results obtained...

Parabolic Marcinkiewicz integrals on product spaces and extrapolation

Mohammed Ali, Mohammed Al-Dolat (2016)

Open Mathematics

Similarity:

In this paper, we study the the parabolic Marcinkiewicz integral [...] MΩ,hρ1,ρ2 Ω , h ρ 1 , ρ 2 on product domains Rn × Rm (n, m ≥ 2). Lp estimates of such operators are obtained under weak conditions on the kernels. These estimates allow us to use an extrapolation argument to obtain some new and improved results on parabolic Marcinkiewicz integral operators.

Homogenization of a linear parabolic problem with a certain type of matching between the microscopic scales

Pernilla Johnsen, Tatiana Lobkova (2018)

Applications of Mathematics

Similarity:

This paper is devoted to the study of the linear parabolic problem ε t u ε ( x , t ) - · ( a ( x / ε , t / ε 3 ) u ε ( x , t ) ) = f ( x , t ) by means of periodic homogenization. Two interesting phenomena arise as a result of the appearance of the coefficient ε in front of the time derivative. First, we have an elliptic homogenized problem although the problem studied is parabolic. Secondly, we get a parabolic local problem even though the problem has a different relation between the spatial and temporal scales than those normally giving rise to parabolic...

Controllability of a parabolic system with a diffuse interface

Jérôme Le Rousseau, Matthieu Léautaud, Luc Robbiano (2013)

Journal of the European Mathematical Society

Similarity:

We consider a linear parabolic transmission problem across an interface of codimension one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic operator on the interface. This system is an idealization of a three-layer model in which the central layer has a small thickness δ . We prove a Carleman estimate in the neighborhood of the interface for an associated elliptic operator by means of partial estimates in several microlocal...

Estimates of weak solutions to nondiagonal quasilinear parabolic systems

Dmitry Portnyagin (2005)

Annales Polonici Mathematici

Similarity:

L -estimates of weak solutions are established for a quasilinear non-diagonal parabolic system with a special structure whose leading terms are modelled by p-Laplacians. A generalization of the weak maximum principle to systems of equations is employed.

On the long-time behaviour of solutions of the p-Laplacian parabolic system

Paweł Goldstein (2008)

Colloquium Mathematicae

Similarity:

Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the p-Laplacian operator is proved. A similar result is obtained for a variable exponent p. In the case of p constant, the convergence is proved to be ¹ l o c , and in the variable exponent case, L² and W 1 , p ( x ) -weak.

Asymptotically self-similar solutions for the parabolic system modelling chemotaxis

Yūki Naito (2006)

Banach Center Publications

Similarity:

We consider a nonlinear parabolic system modelling chemotaxis u t = · ( u - u v ) , v t = Δ v + u in ℝ², t > 0. We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.

Global Attractors for a Class of Semilinear Degenerate Parabolic Equations on N

Cung The Anh, Le Thi Thuy (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove the existence of global attractors for the following semilinear degenerate parabolic equation on N : ∂u/∂t - div(σ(x)∇ u) + λu + f(x,u) = g(x), under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbitrary polynomial growth order of the nonlinearity f. To overcome some difficulties caused by the lack of compactness of the embeddings, these results are proved by combining the tail estimates method and the asymptotic a priori estimate method. ...

Parabolic potentials and wavelet transforms with the generalized translation

Ilham A. Aliev, Boris Rubin (2001)

Studia Mathematica

Similarity:

Parabolic wavelet transforms associated with the singular heat operators - Δ γ + / t and I - Δ γ + / t , where Δ γ = k = 1 n ² / x ² k + ( 2 γ / x ) / x , are introduced. These transforms are defined in terms of the relevant generalized translation operator. An analogue of the Calderón reproducing formula is established. New inversion formulas are obtained for generalized parabolic potentials representing negative powers of the singular heat operators.

Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition

Yong-Hyok Jo, Myong-Hwan Ri (2022)

Applications of Mathematics

Similarity:

We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value u 0 H 1 ( Ω ) is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when u 0 L 2 ( Ω ) and the integral kernel in the nonlocal boundary condition is symmetric. ...

B q for parabolic measures

Caroline Sweezy (1998)

Studia Mathematica

Similarity:

If Ω is a Lip(1,1/2) domain, μ a doubling measure on p Ω , / t - L i , i = 0,1, are two parabolic-type operators with coefficients bounded and measurable, 2 ≤ q < ∞, then the associated measures ω 0 , ω 1 have the property that ω 0 B q ( μ ) implies ω 1 is absolutely continuous with respect to ω 0 whenever a certain Carleson-type condition holds on the difference function of the coefficients of L 1 and L 0 . Also ω 0 B q ( μ ) implies ω 1 B q ( μ ) whenever both measures are center-doubling measures. This is B. Dahlberg’s result for elliptic measures...

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Similarity:

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions...

Absence of global solutions to a class of nonlinear parabolic inequalities

M. Guedda (2002)

Colloquium Mathematicae

Similarity:

We study the absence of nonnegative global solutions to parabolic inequalities of the type u t - ( - Δ ) β / 2 u - V ( x ) u + h ( x , t ) u p , where ( - Δ ) β / 2 , 0 < β ≤ 2, is the β/2 fractional power of the Laplacian. We give a sufficient condition which implies that the only global solution is trivial if p > 1 is small. Among other properties, we derive a necessary condition for the existence of local and global nonnegative solutions to the above problem for the function V satisfying V ( x ) a | x | - b , where a ≥ 0, b > 0, p > 1 and V₊(x): = maxV(x),0....

Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales

Tatiana Danielsson, Pernilla Johnsen (2021)

Mathematica Bohemica

Similarity:

In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in L 2 ( 0 , T ; H 0 1 ( Ω ) ) , fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation ε p t u ε ( x , t ) - · ( a ( x ε - 1 , x ε - 2 , t ε - q , t ε - r ) u ε ( x , t ) ) = f ( x , t ) , where 0 < p < q < r . The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by p , compared to the standard matching that gives rise...