Displaying similar documents to “Statistical approximation by positive linear operators”

Disjoint hypercyclic powers of weighted translations on groups

Liang Zhang, Hui-Qiang Lu, Xiao-Mei Fu, Ze-Hua Zhou (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a locally compact group and let 1 p < . Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space L p ( G ) in terms of the weights. Sufficient...

The linear bound in A₂ for Calderón-Zygmund operators: a survey

Michael Lacey (2011)

Banach Center Publications

Similarity:

For an L²-bounded Calderón-Zygmund Operator T acting on L ² ( d ) , and a weight w ∈ A₂, the norm of T on L²(w) is dominated by C T | | w | | A . The recent theorem completes a line of investigation initiated by Hunt-Muckenhoupt-Wheeden in 1973 (MR0312139), has been established in different levels of generality by a number of authors over the last few years. It has a subtle proof, whose full implications will unfold over the next few years. This sharp estimate requires that the A₂ character of the weight can...

Complete f -moment convergence for weighted sums of WOD arrays with statistical applications

Xi Chen, Xinran Tao, Xuejun Wang (2023)

Kybernetika

Similarity:

Complete f -moment convergence is much more general than complete convergence and complete moment convergence. In this work, we mainly investigate the complete f -moment convergence for weighted sums of widely orthant dependent (WOD, for short) arrays. A general result on Complete f -moment convergence is obtained under some suitable conditions, which generalizes the corresponding one in the literature. As an application, we establish the complete consistency for the weighted linear estimator...

The representation of multi-hypergraphs by set intersections

Stanisław Bylka, Jan Komar (2007)

Discussiones Mathematicae Graph Theory

Similarity:

This paper deals with weighted set systems (V,,q), where V is a set of indices, 2 V and the weight q is a nonnegative integer function on . The basic idea of the paper is to apply weighted set systems to formulate restrictions on intersections. It is of interest to know whether a weighted set system can be represented by set intersections. An intersection representation of (V,,q) is defined to be an indexed family R = ( R v ) v V of subsets of a set S such that | v E R v | = q ( E ) for each E ∈ . A necessary condition...

Isometric composition operators on weighted Dirichlet space

Shi-An Han, Ze-Hua Zhou (2016)

Czechoslovak Mathematical Journal

Similarity:

We investigate isometric composition operators on the weighted Dirichlet space 𝒟 α with standard weights ( 1 - | z | 2 ) α , α > - 1 . The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space 𝒟 . We solve some of these but not in general. We also investigate the situation when 𝒟 α is equipped with another equivalent norm.

-vectors and boundedness

Jan Stochel, F. H. Szafraniec (1997)

Annales Polonici Mathematici

Similarity:

The following two questions as well as their relationship are studied: (i) Is a closed linear operator in a Banach space bounded if its -vectors coincide with analytic (or semianalytic) ones? (ii) When are the domains of two successive powers of the operator in question equal? The affirmative answer to the first question is established in case of paranormal operators. All these investigations are illustrated in the context of weighted shifts.

Weighted boundedness of Toeplitz type operators related to singular integral operators with non-smooth kernel

Xiaosha Zhou, Lanzhe Liu (2013)

Colloquium Mathematicae

Similarity:

Some weighted sharp maximal function inequalities for the Toeplitz type operator T b = k = 1 m T k , 1 M b T k , 2 are established, where T k , 1 are a fixed singular integral operator with non-smooth kernel or ±I (the identity operator), T k , 2 are linear operators defined on the space of locally integrable functions, k = 1,..., m, and M b ( f ) = b f . The weighted boundedness of T b on Morrey spaces is obtained by using sharp maximal function inequalities.

Polyanalytic Besov spaces and approximation by dilatations

Ali Abkar (2024)

Czechoslovak Mathematical Journal

Similarity:

Using partial derivatives f / z and f / z ¯ , we introduce Besov spaces of polyanalytic functions in the open unit disk, as well as in the upper half-plane. We then prove that the dilatations of functions in certain weighted polyanalytic Besov spaces converge to the same functions in norm. When restricted to the open unit disk, we prove that each polyanalytic function of degree q can be approximated in norm by polyanalytic polynomials of degree at most q .

Existence of solutions to the (rot,div)-system in L p -weighted spaces

Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

Similarity:

The existence of solutions to the elliptic problem rot v = w, div v = 0 in a bounded domain Ω ⊂ ℝ³, v · n ̅ | S = 0 , S = ∂Ω in weighted L p -Sobolev spaces is proved. It is assumed that an axis L crosses Ω and the weight is a negative power function of the distance to the axis. The main part of the proof is devoted to examining solutions of the problem in a neighbourhood of L. The existence in Ω follows from the technique of regularization.

Solutions to the equation div u = f in weighted Sobolev spaces

Katrin Schumacher (2008)

Banach Center Publications

Similarity:

We consider the problem div u = f in a bounded Lipschitz domain Ω, where f with Ω f = 0 is given. It is shown that the solution u, constructed as in Bogovski’s approach in [1], fulfills estimates in the weighted Sobolev spaces W w k , q ( Ω ) , where the weight function w is in the class of Muckenhoupt weights A q .

Some duality results on bounded approximation properties of pairs

Eve Oja, Silja Treialt (2013)

Studia Mathematica

Similarity:

The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair ( X * , Y ) has the λ-bounded approximation property. Then there exists a net ( S α ) of finite-rank operators on X such that S α ( Y ) Y and | | S α | | λ for all α, and ( S α ) and ( S * α ) converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.

Note on duality of weighted multi-parameter Triebel-Lizorkin spaces

Wei Ding, Jiao Chen, Yaoming Niu (2019)

Czechoslovak Mathematical Journal

Similarity:

We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces F ˙ p α , q ( ω ; n 1 × n 2 ) . This space has been introduced and the result ( F ˙ p α , q ( ω ; n 1 × n 2 ) ) * = CMO p - α , q ' ( ω ; n 1 × n 2 ) for 0 < p 1 has been proved in Ding, Zhu (2017). In this paper, for 1 < p < , 0 < q < we establish its dual space H ˙ p α , q ( ω ; n 1 × n 2 ) .

A-Statistical Convergence of Subsequence of Double Sequences

Harry I. Miller (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

The concept of statistical convergence of a sequence was first introduced by H. Fast [7] in 1951. Recently, in the literature, the concept of statistical convergence of double sequences has been studied. The main result in this paper is a theorem that gives meaning to the statement: s = s i j converges statistically A to L if and only if "most" of the "subsequences" of s converge to L in the ordinary sense. The results presented here are analogue of theorems in [12], [13] and [6] and are concerned...

Lipschitz continuity in Muckenhoupt 𝓐₁ weighted function spaces

Dorothee D. Haroske (2011)

Banach Center Publications

Similarity:

We study continuity envelopes of function spaces B p , q s ( , w ) and F p , q s ( , w ) where the weight belongs to the Muckenhoupt class ₁. This essentially extends partial forerunners in [13, 14]. We also indicate some applications of these results.

Weighted Frobenius-Perron operators and their spectra

Mohammad Reza Jabbarzadeh, Rana Hajipouri (2017)

Mathematica Bohemica

Similarity:

First, some classic properties of a weighted Frobenius-Perron operator 𝒫 ϕ u on L 1 ( Σ ) as a predual of weighted Koopman operator W = u U ϕ on L ( Σ ) will be investigated using the language of the conditional expectation operator. Also, we determine the spectrum of 𝒫 ϕ u under certain conditions.

Regular statistical convergence of double sequences

Ferenc Móricz (2005)

Colloquium Mathematicae

Similarity:

The concepts of statistical convergence of single and double sequences of complex numbers were introduced in [1] and [7], respectively. In this paper, we introduce the concept indicated in the title. A double sequence x j k : ( j , k ) ² is said to be regularly statistically convergent if (i) the double sequence x j k is statistically convergent to some ξ ∈ ℂ, (ii) the single sequence x j k : k is statistically convergent to some ξ j for each fixed j ∈ ℕ ∖ ₁, (iii) the single sequence x j k : j is statistically convergent...

Approximation by weighted polynomials in k

Maritza M. Branker (2005)

Annales Polonici Mathematici

Similarity:

We apply pluripotential theory to establish results in k concerning uniform approximation by functions of the form wⁿPₙ where w denotes a continuous nonnegative function and Pₙ is a polynomial of degree at most n. Then we use our work to show that on the intersection of compact sections Σ k a continuous function on Σ is uniformly approximable by θ-incomplete polynomials (for a fixed θ, 0 < θ < 1) iff f vanishes on θ²Σ. The class of sets Σ expressible as the intersection of compact...

Composition in ultradifferentiable classes

Armin Rainer, Gerhard Schindl (2014)

Studia Mathematica

Similarity:

We characterize stability under composition of ultradifferentiable classes defined by weight sequences M, by weight functions ω, and, more generally, by weight matrices , and investigate continuity of composition (g,f) ↦ f ∘ g. In addition, we represent the Beurling space ( ω ) and the Roumieu space ω as intersection and union of spaces ( M ) and M for associated weight sequences, respectively.