Displaying similar documents to “Asymptotics of parabolic equations with possible blow-up”

Global solutions, structure of initial data and the Navier-Stokes equations

Piotr Bogusław Mucha (2008)

Banach Center Publications

Similarity:

In this note we present a proof of existence of global in time regular (unique) solutions to the Navier-Stokes equations in an arbitrary three dimensional domain with a general boundary condition. The only restriction is that the L₂-norm of the initial datum is required to be sufficiently small. The magnitude of the rest of the norm is not restricted. Our considerations show the essential role played by the energy bound in proving global in time results for the Navier-Stokes equations. ...

Global attractor for the Navier-Stokes equations in a cylindrical pipe

Piotr Kacprzyk (2010)

Annales Polonici Mathematici

Similarity:

Global existence of regular special solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has already been shown. In this paper we prove the existence of the global attractor for the Navier-Stokes equations and convergence of the solution to a stationary solution.

On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation

M. Pulvirenti (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.

Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping

Kwang-Ok Li, Yong-Ho Kim (2023)

Applications of Mathematics

Similarity:

This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids. ...

The Stokes system in the incompressible case-revisited

Rainer Picard (2008)

Banach Center Publications

Similarity:

The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.

Global attractor for Navier-Stokes equations in cylindrical domains

Bernard Nowakowski, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Similarity:

Global and regular solutions of the Navier-Stokes system in cylindrical domains have already been obtained under the assumption of smallness of (1) the derivative of the velocity field with respect to the variable along the axis of cylinder, (2) the derivative of force field with respect to the variable along the axis of the cylinder and (3) the projection of the force field on the axis of the cylinder restricted to the part of the boundary perpendicular to the axis of the cylinder....

Regularity properties of the attractor to the Navier-Stokes equations

Piotr Kacprzyk (2010)

Applicationes Mathematicae

Similarity:

Existence of a global attractor for the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has been shown already. In this paper we prove the higher regularity of the attractor.

Global existence for the inflow-outflow problem for the Navier-Stokes equations in a cylinder

Piotr Kacprzyk (2009)

Applicationes Mathematicae

Similarity:

Global existence of regular solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe with large inflow and outflow is shown. To prove the long time existence we need smallness of derivatives, with respect to the variable along the axis of the cylinder, of the external force and of the initial velocity in L₂-norms. Moreover, we need smallness of derivatives of inflow and outflow with respect to tangent directions to the boundary...

Blow-up for the compressible isentropic Navier-Stokes-Poisson equations

Jianwei Dong, Junhui Zhu, Yanping Wang (2020)

Czechoslovak Mathematical Journal

Similarity:

We will show the blow-up of smooth solutions to the Cauchy problems for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing and compressible bipolar isentropic Navier-Stokes-Poisson equations in arbitrary dimensions under some restrictions on the initial data. The key of the proof is finding the relations between the physical quantities and establishing some differential inequalities.

Dual-mixed finite element methods for the Navier-Stokes equations

Jason S. Howell, Noel J. Walkington (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.