The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Local derivations in polynomial and power series rings”

On the ring of constants for derivations of power series rings in two variables

Leonid Makar-Limanov, Andrzej Nowicki (2001)

Colloquium Mathematicae

Similarity:

Let k[[x,y]] be the formal power series ring in two variables over a field k of characteristic zero and let d be a nonzero derivation of k[[x,y]]. We prove that if Ker(d) ≠ k then Ker(d) = Ker(δ), where δ is a jacobian derivation of k[[x,y]]. Moreover, Ker(d) is of the form k[[h]] for some h ∈ k[[x,y]].

The Abhyankar-Jung theorem for excellent henselian subrings of formal power series

Krzysztof Jan Nowak (2010)

Annales Polonici Mathematici

Similarity:

Given an algebraically closed field K of characteristic zero, we prove the Abhyankar-Jung theorem for any excellent henselian ring whose completion is a formal power series ring K[[z]]. In particular, examples include the local rings which form a Weierstrass system over the field K.