Displaying similar documents to “On the eigenfunction expansion method for semilinear dissipative equations in bounded domains and the Kuramoto-Sivashinsky equation in a ball”

Divergent solutions to the 5D Hartree equations

Daomin Cao, Qing Guo (2011)

Colloquium Mathematicae

Similarity:

We consider the Cauchy problem for the focusing Hartree equation i u t + Δ u + ( | · | - 3 | u | ² ) u = 0 in ℝ⁵ with initial data in H¹, and study the divergence property of infinite-variance and nonradial solutions. For the ground state solution of - Q + Δ Q + ( | · | - 3 | Q | ² ) Q = 0 in ℝ⁵, we prove that if u₀ ∈ H¹ satisfies M(u₀)E(u₀) < M(Q)E(Q) and ||∇u₀||₂||u₀||₂ > ||∇Q||₂||Q||₂, then the corresponding solution u(t) either blows up in finite forward time, or exists globally for positive time and there exists a time sequence tₙ → ∞ such that ||∇u(tₙ)||₂...

On n-circled -domains of holomorphy

Marek Jarnicki, Peter Pflug (1997)

Annales Polonici Mathematici

Similarity:

We present various characterizations of n-circled domains of holomorphy G n with respect to some subspaces of ( G ) .

Asymptotic analysis of the initial boundary value problem for the thermoelastic system in a perforated domain

M. Sango (2003)

Colloquium Mathematicae

Similarity:

We study the initial boundary value problem for the system of thermoelasticity in a sequence of perforated cylindrical domains Q T ( s ) , s = 1,2,... We prove that as s → ∞, the solution of the problem converges in appropriate topologies to the solution of a limit initial boundary value problem of the same type but containing some additional terms which are expressed in terms of quantities related to the geometry of Q T ( s ) . We give an explicit construction of that limit problem.

On inertial manifolds for reaction-diffusion equations on genuinely high-dimensional thin domains

M. Prizzi, K. P. Rybakowski (2003)

Studia Mathematica

Similarity:

We study a family of semilinear reaction-diffusion equations on spatial domains Ω ε , ε > 0, in l lying close to a k-dimensional submanifold ℳ of l . As ε → 0⁺, the domains collapse onto (a subset of) ℳ. As proved in [15], the above family has a limit equation, which is an abstract semilinear parabolic equation defined on a certain limit phase space denoted by H ¹ s ( Ω ) . The definition of H ¹ s ( Ω ) , given in the above paper, is very abstract. One of the objectives of this paper is to give more manageable...

Solvability for semilinear PDE with multiple characteristics

Alessandro Oliaro, Luigi Rodino (2003)

Banach Center Publications

Similarity:

We prove local solvability in Gevrey spaces for a class of semilinear partial differential equations. The linear part admits characteristics of multiplicity k ≥ 2 and data are fixed in G σ , 1 < σ < k/(k-1). The nonlinearity, containing derivatives of lower order, is assumed of class G σ with respect to all variables.

Local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation in Besov spaces

Gang Wu, Jia Yuan (2007)

Applicationes Mathematicae

Similarity:

We study local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation t u - ³ t x x u + 2 κ x u + x [ g ( u ) / 2 ] = γ ( 2 x u ² x x u + u ³ x x x u ) for the initial data u₀(x) in the Besov space B p , r s ( ) with max(3/2,1 + 1/p) < s ≤ m and (p,r) ∈ [1,∞]², where g:ℝ → ℝ is a given C m -function (m ≥ 4) with g(0)=g’(0)=0, and κ ≥ 0 and γ ∈ ℝ are fixed constants. Using estimates for the transport equation in the framework of Besov spaces, compactness arguments and Littlewood-Paley theory, we get a local well-posedness result.

Large data local solutions for the derivative NLS equation

Ioan Bejenaru, Daniel Tataru (2008)

Journal of the European Mathematical Society

Similarity:

We consider the derivative NLS equation with general quadratic nonlinearities. In [2] the first author has proved a sharp small data local well-posedness result in Sobolev spaces with a decay structure at infinity in dimension n = 2 . Here we prove a similar result for large initial data in all dimensions n 2 .

Global regularity for the 3D MHD system with damping

Zujin Zhang, Xian Yang (2016)

Colloquium Mathematicae

Similarity:

We study the Cauchy problem for the 3D MHD system with damping terms ε | u | α - 1 u and δ | b | β - 1 b (ε, δ > 0 and α, β ≥ 1), and show that the strong solution exists globally for any α, β > 3. This improves the previous results significantly.

Selfsimilar profiles in large time asymptotics of solutions to damped wave equations

Grzegorz Karch (2000)

Studia Mathematica

Similarity:

Large time behavior of solutions to the generalized damped wave equation u t t + A u t + ν B u + F ( x , t , u , u t , u ) = 0 for ( x , t ) n × [ 0 , ) is studied. First, we consider the linear nonhomogeneous equation, i.e. with F = F(x,t) independent of u. We impose conditions on the operators A and B, on F, as well as on the initial data which lead to the selfsimilar large time asymptotics of solutions. Next, this abstract result is applied to the equation where A u t = u t , B u = - Δ u , and the nonlinear term is either | u t | q - 1 u t or | u | α - 1 u . In this case, the asymptotic profile of solutions...

Behaviour of the first eigenvalue of the p-Laplacian in a domain with a hole

M. Sango (2001)

Colloquium Mathematicae

Similarity:

We investigate the behaviour of a sequence λ s , s = 1,2,..., of eigenvalues of the Dirichlet problem for the p-Laplacian in the domains Ω s , s = 1,2,..., obtained by removing from a given domain Ω a set E s whose diameter vanishes when s → ∞. We estimate the deviation of λ s from the eigenvalue of the limit problem. For the derivation of our results we construct an appropriate asymptotic expansion for the sequence of solutions of the original eigenvalue problem.

Comparison of solutions and successive approximations in the theory of the equation 2 z / x y = f ( x , y , z , z / x , z / y )

J. Kisyński, A. Pelczar

Similarity:

CONTENTSIntroduction........................................................................................................................................................................................................... 5I. THE CAUCHY-DARBOUX PROBLEM IN FUNCTION CLASSES C 1 ' * ( Δ a , b ; E ) AND L 1 1 , * ( Δ a , b ; E ) ......................... 71. Basic function classes ......................................................................................................................................................................................

Width asymptotics for a pair of Reinhardt domains

A. Aytuna, A. Rashkovskii, V. Zahariuta (2002)

Annales Polonici Mathematici

Similarity:

For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics l n d s ( A K D ) - ( ( n ! s ) / τ ( K , D ) ) 1 / n , s → ∞, for the Kolmogorov widths d s ( A K D ) of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.

A new look at an old comparison theorem

Jaroslav Jaroš (2021)

Archivum Mathematicum

Similarity:

We present an integral comparison theorem which guarantees the global existence of a solution of the generalized Riccati equation on the given interval [ a , b ) when it is known that certain majorant Riccati equation has a global solution on [ a , b ) .

The equation ¯ u = f the intersection of pseudoconvex domains

Alessandro Perotti (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Viene studiata l'equazione ¯ u = f per le forme regolari sulla chiusura dell'intersezione di k domini pseudoconvessi. Si costruisce un operatore soluzione in forma integrale e sotto ipotesi opportune si ottengono stime della soluzione nelle norme 𝐂 k .

Existence and regularity of solutions of some elliptic system in domains with edges

Wojciech M. Zajączkowski

Similarity:

CONTENTS1. Introduction.......................................................................52. Notation and auxiliary results............................................93. Statement of the problem (1.1)-(1.3)..............................204. The problem (3.14).........................................................225. Auxiliary results in D ϑ ...............................................346. Existence of solutions of (3.14) in H μ k ( D ϑ ) ............417. Green function................................................................528....

An inequality for spherical Cauchy dual tuples

Sameer Chavan (2013)

Colloquium Mathematicae

Similarity:

Let T be a spherical 2-expansive m-tuple and let T denote its spherical Cauchy dual. If T is commuting then the inequality | β | = k ( β ! ) - 1 ( T ) β ( T ) * β ( k + m - 1 k ) | β | = k ( β ! ) - 1 ( T ) * β ( T ) β holds for every positive integer k. In case m = 1, this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a 2-expansive (or concave) operator are hyponormal.

Error analysis of splitting methods for semilinear evolution equations

Masahito Ohta, Takiko Sasaki (2017)

Applications of Mathematics

Similarity:

We consider a Strang-type splitting method for an abstract semilinear evolution equation t u = A u + F ( u ) . Roughly speaking, the splitting method is a time-discretization approximation based on the decomposition of the operators A and F . Particularly, the Strang method is a popular splitting method and is known to be convergent at a second order rate for some particular ODEs and PDEs. Moreover, such estimates usually address the case of splitting the operator into two parts. In this paper, we consider...

A generalization of the Keller-Segel system to higher dimensions from a structural viewpoint

Fujie, Kentarou, Senba, Takasi

Similarity:

We consider initial boundary problems of a two-chemical substances chemotaxis system. In the four-dimensional setting, it was shown that solutions exist globally in time and remain bounded if the total mass is less than ( 8 π ) 2 , whereas the solution emanating from some initial data of large magnitude may blows up. This result can be regarded as a generalization of the well-known 8 π problem in the Keller–Segel system to higher dimensions. We will compare mathematical structures of the Keller–Segel...

Dynamics of a modified Davey-Stewartson system in ℝ³

Jing Lu (2016)

Colloquium Mathematicae

Similarity:

We study the Cauchy problem in ℝ³ for the modified Davey-Stewartson system i u + Δ u = λ | u | u + λ b u v x , - Δ v = b ( | u | ² ) x . Under certain conditions on λ₁ and λ₂, we provide a complete picture of the local and global well-posedness, scattering and blow-up of the solutions in the energy space. Methods used in the paper are based upon the perturbation theory from [Tao et al., Comm. Partial Differential Equations 32 (2007), 1281-1343] and the convexity method from [Glassey, J. Math. Phys. 18 (1977), 1794-1797].