Displaying similar documents to “Copies of in the space of Pettis integrable functions with integrals of finite variation”

Order-bounded operators from vector-valued function spaces to Banach spaces

Marian Nowak (2005)

Banach Center Publications

Similarity:

Let E be an ideal of L⁰ over a σ-finite measure space (Ω,Σ,μ). For a real Banach space ( X , | | · | | X ) let E(X) be a subspace of the space L⁰(X) of μ-equivalence classes of strongly Σ-measurable functions f: Ω → X and consisting of all those f ∈ L⁰(X) for which the scalar function | | f ( · ) | | X belongs to E. Let E(X)˜ stand for the order dual of E(X). For u ∈ E⁺ let D u ( = f E ( X ) : | | f ( · ) | | X u ) stand for the order interval in E(X). For a real Banach space ( Y , | | · | | Y ) a linear operator T: E(X) → Y is said to be order-bounded whenever for each u ∈...

Henstock-Kurzweil integral on BV sets

Jan Malý, Washek Frank Pfeffer (2016)

Mathematica Bohemica

Similarity:

The generalized Riemann integral of Pfeffer (1991) is defined on all bounded BV subsets of n , but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of σ -finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of BV sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect...

Variational Henstock integrability of Banach space valued functions

Luisa Di Piazza, Valeria Marraffa, Kazimierz Musiał (2016)

Mathematica Bohemica

Similarity:

We study the integrability of Banach space valued strongly measurable functions defined on [ 0 , 1 ] . In the case of functions f given by n = 1 x n χ E n , where x n are points of a Banach space and the sets E n are Lebesgue measurable and pairwise disjoint subsets of [ 0 , 1 ] , there are well known characterizations for Bochner and Pettis integrability of f . The function f is Bochner integrable if and only if the series n = 1 x n | E n | is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability...

On coincidence of Pettis and McShane integrability

Marián J. Fabián (2015)

Czechoslovak Mathematical Journal

Similarity:

R. Deville and J. Rodríguez proved that, for every Hilbert generated space X , every Pettis integrable function f : [ 0 , 1 ] X is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space X and a scalarly null (hence Pettis integrable) function from [ 0 , 1 ] into X , which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from [ 0 , 1 ] (mostly) into C ( K ) spaces. We focus in more detail on...

Continuity in the Alexiewicz norm

Erik Talvila (2006)

Mathematica Bohemica

Similarity:

If f is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz norm of f is f = sup I | I f | where the supremum is taken over all intervals I . Define the translation τ x by τ x f ( y ) = f ( y - x ) . Then τ x f - f tends to 0 as x tends to 0 , i.e., f is continuous in the Alexiewicz norm. For particular functions, τ x f - f can tend to 0 arbitrarily slowly. In general, τ x f - f osc f | x | as x 0 , where osc f is the oscillation of f . It is shown that if F is a primitive of f then τ x F - F f | x | . An example shows that the function y τ x F ( y ) - F ( y ) need not be in L 1 . However, if...

Algebraic genericity of strict-order integrability

Luis Bernal-González (2010)

Studia Mathematica

Similarity:

We provide sharp conditions on a measure μ defined on a measurable space X guaranteeing that the family of functions in the Lebesgue space L p ( μ , X ) (p ≥ 1) which are not q-integrable for any q > p (or any q < p) contains large subspaces of L p ( μ , X ) (without zero). This improves recent results due to Aron, García, Muñoz, Palmberg, Pérez, Puglisi and Seoane. It is also shown that many non-q-integrable functions can even be obtained on any nonempty open subset of X, assuming that X is a topological...

Application of ( L ) sets to some classes of operators

Kamal El Fahri, Nabil Machrafi, Jawad H&amp;#039;michane, Aziz Elbour (2016)

Mathematica Bohemica

Similarity:

The paper contains some applications of the notion of Ł sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order ( L ) -Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an ( L ) sets. As a sequence characterization of such operators, we see that an operator T : X E from a Banach space into a Banach lattice is order Ł -Dunford-Pettis, if and only if | T ( x n ) | 0 for σ ( E , E ' ) for every...

The L r Henstock-Kurzweil integral

Paul M. Musial, Yoram Sagher (2004)

Studia Mathematica

Similarity:

We present a method of integration along the lines of the Henstock-Kurzweil integral. All L r -derivatives are integrable in this method.

Dunford-Pettis operators on the space of Bochner integrable functions

Marian Nowak (2011)

Banach Center Publications

Similarity:

Let (Ω,Σ,μ) be a finite measure space and let X be a real Banach space. Let L Φ ( X ) be the Orlicz-Bochner space defined by a Young function Φ. We study the relationships between Dunford-Pettis operators T from L¹(X) to a Banach space Y and the compactness properties of the operators T restricted to L Φ ( X ) . In particular, it is shown that if X is a reflexive Banach space, then a bounded linear operator T:L¹(X) → Y is Dunford-Pettis if and only if T restricted to L ( X ) is ( τ ( L ( X ) , L ¹ ( X * ) ) , | | · | | Y ) -compact.

Large structures made of nowhere L q functions

Szymon Głąb, Pedro L. Kaufmann, Leonardo Pellegrini (2014)

Studia Mathematica

Similarity:

We say that a real-valued function f defined on a positive Borel measure space (X,μ) is nowhere q-integrable if, for each nonvoid open subset U of X, the restriction f | U is not in L q ( U ) . When (X,μ) has some natural properties, we show that certain sets of functions defined in X which are p-integrable for some p’s but nowhere q-integrable for some other q’s (0 < p,q < ∞) admit a variety of large linear and algebraic structures within them. The presented results answer a question of Bernal-González,...

A necessary condition for HK-integrability of the Fourier sine transform function

Juan H. Arredondo, Manuel Bernal, Maria G. Morales (2025)

Czechoslovak Mathematical Journal

Similarity:

The paper is concerned with integrability of the Fourier sine transform function when f BV 0 ( ) , where BV 0 ( ) is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of f to be integrable in the Henstock-Kurzweil sense, it is necessary that f / x L 1 ( ) . We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.