Displaying similar documents to “Bounded operators on weighted spaces of holomorphic functions on the upper half-plane”

Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball

Yu-Xia Liang, Chang-Jin Wang, Ze-Hua Zhou (2015)

Annales Polonici Mathematici

Similarity:

Let H() denote the space of all holomorphic functions on the unit ball ⊂ ℂⁿ. Let φ be a holomorphic self-map of and u∈ H(). The weighted composition operator u C φ on H() is defined by u C φ f ( z ) = u ( z ) f ( φ ( z ) ) . We investigate the boundedness and compactness of u C φ induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.

Weighted L -estimates for Bergman projections

José Bonet, Miroslav Engliš, Jari Taskinen (2005)

Studia Mathematica

Similarity:

We consider Bergman projections and some new generalizations of them on weighted L ( ) -spaces. A new reproducing formula is obtained. We show the boundedness of these projections for a large family of weights v which tend to 0 at the boundary with a polynomial speed. These weights may even be nonradial. For logarithmically decreasing weights bounded projections do not exist. In this case we instead consider the projective description problem for holomorphic inductive limits.

Commutant of multiplication operators in weighted Bergman spaces on polydisk

Ali Abkar (2020)

Czechoslovak Mathematical Journal

Similarity:

We study a certain operator of multiplication by monomials in the weighted Bergman space both in the unit disk of the complex plane and in the polydisk of the n -dimensional complex plane. Characterization of the commutant of such operators is given.

Disjoint hypercyclic powers of weighted translations on groups

Liang Zhang, Hui-Qiang Lu, Xiao-Mei Fu, Ze-Hua Zhou (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a locally compact group and let 1 p < . Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space L p ( G ) in terms of the weights. Sufficient...

Centered weighted composition operators via measure theory

Mohammad Reza Jabbarzadeh, Mehri Jafari Bakhshkandi (2018)

Mathematica Bohemica

Similarity:

We describe the centered weighted composition operators on L 2 ( Σ ) in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert’s theorem on centered composition operators.

Weighted Fréchet spaces of holomorphic functions

Elke Wolf (2006)

Studia Mathematica

Similarity:

This article deals with weighted Fréchet spaces of holomorphic functions which are defined as countable intersections of weighted Banach spaces of type H . We characterize when these Fréchet spaces are Schwartz, Montel or reflexive. The quasinormability is also analyzed. In the latter case more restrictive assumptions are needed to obtain a full characterization.

The linear bound in A₂ for Calderón-Zygmund operators: a survey

Michael Lacey (2011)

Banach Center Publications

Similarity:

For an L²-bounded Calderón-Zygmund Operator T acting on L ² ( d ) , and a weight w ∈ A₂, the norm of T on L²(w) is dominated by C T | | w | | A . The recent theorem completes a line of investigation initiated by Hunt-Muckenhoupt-Wheeden in 1973 (MR0312139), has been established in different levels of generality by a number of authors over the last few years. It has a subtle proof, whose full implications will unfold over the next few years. This sharp estimate requires that the A₂ character of the weight can...

On an integral-type operator from Privalov spaces to Bloch-type spaces

Xiangling Zhu (2011)

Annales Polonici Mathematici

Similarity:

Let H(B) denote the space of all holomorphic functions on the unit ball B of ℂⁿ. Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. We study the integral-type operator C φ g f ( z ) = 0 1 f ( φ ( t z ) ) g ( t z ) d t / t , f ∈ H(B). The boundedness and compactness of C φ g from Privalov spaces to Bloch-type spaces and little Bloch-type spaces are studied

On the isomorphism classes of weighted spaces of harmonic and holomorphic functions

Wolfgang Lusky (2006)

Studia Mathematica

Similarity:

Let Ω be either the complex plane or the open unit disc. We completely determine the isomorphism classes of H v = f : Ω h o l o m o r p h i c : s u p z Ω | f ( z ) | v ( z ) < and investigate some isomorphism classes of h v = f : Ω h a r m o n i c : s u p z Ω | f ( z ) | v ( z ) < where v is a given radial weight function. Our main results show that, without any further condition on v, there are only two possibilities for Hv, namely either H v l or H v H , and at least two possibilities for hv, again h v l and h v H . We also discuss many new examples of weights.

Statistical approximation by positive linear operators

O. Duman, C. Orhan (2004)

Studia Mathematica

Similarity:

Using A-statistical convergence, we prove a Korovkin type approximation theorem which concerns the problem of approximating a function f by means of a sequence Tₙ(f;x) of positive linear operators acting from a weighted space C ϱ into a weighted space B ϱ .

Function theory in sectors

Brian Jefferies (2004)

Studia Mathematica

Similarity:

It is shown that there is a one-to-one correspondence between uniformly bounded holomorphic functions of n complex variables in sectors of ℂⁿ, and uniformly bounded functions of n+1 real variables in sectors of n + 1 that are monogenic functions in the sense of Clifford analysis. The result is applied to the construction of functional calculi for n commuting operators, including the example of differentiation operators on a Lipschitz surface in n + 1 .

-vectors and boundedness

Jan Stochel, F. H. Szafraniec (1997)

Annales Polonici Mathematici

Similarity:

The following two questions as well as their relationship are studied: (i) Is a closed linear operator in a Banach space bounded if its -vectors coincide with analytic (or semianalytic) ones? (ii) When are the domains of two successive powers of the operator in question equal? The affirmative answer to the first question is established in case of paranormal operators. All these investigations are illustrated in the context of weighted shifts.

Continuation of holomorphic functions with growth conditions and some of its applications

Alexander V. Abanin, Pham Trong Tien (2010)

Studia Mathematica

Similarity:

We prove a generalization of the well-known Hörmander theorem on continuation of holomorphic functions with growth conditions from complex planes in p into the whole p . We apply this result to construct special families of entire functions playing an important role in convolution equations, interpolation and extension of infinitely differentiable functions from closed sets. These families, in their turn, are used to study optimal or canonical, in a certain sense, weight sequences defining...

On mean value properties involving a logarithm-type weight

Nikolai G. Kuznecov (2024)

Mathematica Bohemica

Similarity:

Two new assertions characterizing analytically disks in the Euclidean plane 2 are proved. Weighted mean value property of positive solutions to the Helmholtz and modified Helmholtz equations are used for this purpose; the weight has a logarithmic singularity. The obtained results are compared with those without weight that were found earlier.

An extension theorem for separately holomorphic functions with analytic singularities

Marek Jarnicki, Peter Pflug (2003)

Annales Polonici Mathematici

Similarity:

Let D j k j be a pseudoconvex domain and let A j D j be a locally pluriregular set, j = 1,...,N. Put X : = j = 1 N A × . . . × A j - 1 × D j × A j + 1 × . . . × A N k + . . . + k N . Let U be an open connected neighborhood of X and let M ⊊ U be an analytic subset. Then there exists an analytic subset M̂ of the “envelope of holomorphy” X̂ of X with M̂ ∩ X ⊂ M such that for every function f separately holomorphic on X∖M there exists an f̂ holomorphic on X̂∖M̂ with f ̂ | X M = f . The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], [Sic 2001], and [Jar-Pfl 2001]. ...

Existence of solutions to the (rot,div)-system in L p -weighted spaces

Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

Similarity:

The existence of solutions to the elliptic problem rot v = w, div v = 0 in a bounded domain Ω ⊂ ℝ³, v · n ̅ | S = 0 , S = ∂Ω in weighted L p -Sobolev spaces is proved. It is assumed that an axis L crosses Ω and the weight is a negative power function of the distance to the axis. The main part of the proof is devoted to examining solutions of the problem in a neighbourhood of L. The existence in Ω follows from the technique of regularization.

The representation of multi-hypergraphs by set intersections

Stanisław Bylka, Jan Komar (2007)

Discussiones Mathematicae Graph Theory

Similarity:

This paper deals with weighted set systems (V,,q), where V is a set of indices, 2 V and the weight q is a nonnegative integer function on . The basic idea of the paper is to apply weighted set systems to formulate restrictions on intersections. It is of interest to know whether a weighted set system can be represented by set intersections. An intersection representation of (V,,q) is defined to be an indexed family R = ( R v ) v V of subsets of a set S such that | v E R v | = q ( E ) for each E ∈ . A necessary condition...

On the diametral dimension of weighted spaces of analytic germs

Michael Langenbruch (2016)

Studia Mathematica

Similarity:

We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces S ¹ α and S α for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.

Holomorphic series expansion of functions of Carleman type

Taib Belghiti (2004)

Annales Polonici Mathematici

Similarity:

Let f be a holomorphic function of Carleman type in a bounded convex domain D of the plane. We show that f can be expanded in a series f = ∑ₙfₙ, where fₙ is a holomorphic function in Dₙ satisfying s u p z D | f ( z ) | C ϱ for some constants C > 0 and 0 < ϱ < 1, and where (Dₙ)ₙ is a suitably chosen sequence of decreasing neighborhoods of the closure of D. Conversely, if f admits such an expansion then f is of Carleman type. The decrease of the sequence Dₙ characterizes the smoothness of f. ...

Existence of solutions to the (rot,div)-system in L₂-weighted spaces

Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Similarity:

The existence of solutions to the elliptic problem rot v = w, div v = 0 in Ω ⊂ ℝ³, v · n ̅ | S = 0 , S = ∂Ω, in weighted Hilbert spaces is proved. It is assumed that Ω contains an axis L and the weight is a negative power of the distance to the axis. The main part of the proof is devoted to examining solutions in a neighbourhood of L. Their existence in Ω follows by regularization.

On spaces of holomorphic functions in ℂⁿ

Diana D. Jiménez S., Lino F. Reséndis O., Luis M. Tovar S. (2014)

Banach Center Publications

Similarity:

Following the line of Ouyang et al. (1998) to study the p spaces of holomorphic functions in the unit ball of ℂⁿ, we present in this paper several results and relations among p ( ) , the α-Bloch, the Dirichlet p and the little p , 0 spaces.

Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains

Ting Guo, Zhiming Feng, Enchao Bi (2021)

Czechoslovak Mathematical Journal

Similarity:

We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain D n , m p ( μ ) . The generalized Fock-Bargmann-Hartogs domain is defined by inequality e μ z 2 j = 1 m | ω j | 2 p < 1 , where ( z , ω ) n × m . In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain D n , m p ( μ ) becomes a holomorphic automorphism if and only if it keeps the function j = 1 m | ω j | 2 p e μ z 2 invariant.

On the Rogosinski radius for holomorphic mappings and some of its applications

Lev Aizenberg, Mark Elin, David Shoikhet (2005)

Studia Mathematica

Similarity:

The well known theorem of Rogosinski asserts that if the modulus of the sum of a power series is less than 1 in the open unit disk: | n = 0 a z | < 1 , |z| < 1, then all its partial sums are less than 1 in the disk of radius 1/2: | n = 0 k a z | < 1 , |z| < 1/2, and this radius is sharp. We present a generalization of this theorem to holomorphic mappings of the open unit ball into an arbitrary convex domain. Other multidimensional analogs of Rogosinski’s theorem as well as some applications to dynamical systems are...