Displaying similar documents to “Reconstruction of manifolds and subsets of normed spaces from subgroups of their homeomorphism groups”

Homeomorphism groups of Sierpiński carpets and Erdős space

Jan J. Dijkstra, Dave Visser (2010)

Fundamenta Mathematicae

Similarity:

Erdős space is the “rational” Hilbert space, that is, the set of vectors in ℓ² with all coordinates rational. Erdős proved that is one-dimensional and homeomorphic to its own square × , which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of . Let M n + 1 , n ∈ ℕ, be the n-dimensional Menger continuum in n + 1 , also known as the n-dimensional Sierpiński carpet, and let D be a countable dense subset of M n + 1 . We consider the topological group...

A theorem on isotropic spaces

Félix Cabello Sánchez (1999)

Studia Mathematica

Similarity:

Let X be a normed space and G F ( X ) the group of all linear surjective isometries of X that are finite-dimensional perturbations of the identity. We prove that if G F ( X ) acts transitively on the unit sphere then X must be an inner product space.

On area and side lengths of triangles in normed planes

Gennadiy Averkov, Horst Martini (2009)

Colloquium Mathematicae

Similarity:

Let d be a d-dimensional normed space with norm ||·|| and let B be the unit ball in d . Let us fix a Lebesgue measure V B in d with V B ( B ) = 1 . This measure will play the role of the volume in d . We consider an arbitrary simplex T in d with prescribed edge lengths. For the case d = 2, sharp upper and lower bounds of V B ( T ) are determined. For d ≥ 3 it is noticed that the tight lower bound of V B ( T ) is zero.

Algebraic and topological properties of some sets in ℓ₁

Taras Banakh, Artur Bartoszewicz, Szymon Głąb, Emilia Szymonik (2012)

Colloquium Mathematicae

Similarity:

For a sequence x ∈ ℓ₁∖c₀₀, one can consider the set E(x) of all subsums of the series n = 1 x ( n ) . Guthrie and Nymann proved that E(x) is one of the following types of sets: () a finite union of closed intervals; () homeomorphic to the Cantor set; homeomorphic to the set T of subsums of n = 1 b ( n ) where b(2n-1) = 3/4ⁿ and b(2n) = 2/4ⁿ. Denote by ℐ, and the sets of all sequences x ∈ ℓ₁∖c₀₀ such that E(x) has the property (ℐ), () and ( ), respectively. We show that ℐ and are strongly -algebrable and is -lineable....

An irrational problem

Franklin D. Tall (2002)

Fundamenta Mathematicae

Similarity:

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U M : U M . Suppose X M is homeomorphic to the irrationals; must X = X M ? We have partial results. We also answer a question of Gruenhage by showing that if X M is homeomorphic to the “Long Cantor Set”, then X = X M .

Nonnormality of remainders of some topological groups

Aleksander V. Arhangel'skii, J. van Mill (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group G has a normal remainder. In a previous paper we showed that under mild conditions on G , the Continuum Hypothesis implies that if the Čech-Stone remainder G * of G is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight...

R z -supercontinuous functions

Davinder Singh, Brij Kishore Tyagi, Jeetendra Aggarwal, Jogendra K. Kohli (2015)

Mathematica Bohemica

Similarity:

A new class of functions called “ R z -supercontinuous functions” is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of R z -supercontinuous functions properly includes the class of R cl -supercontinuous functions, Tyagi, Kohli, Singh (2013), which in its turn contains the class of cl -supercontinuous ( clopen continuous) functions, Singh (2007), Reilly, Vamanamurthy (1983),...

On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin (2018)

Czechoslovak Mathematical Journal

Similarity:

Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

Finiteness problems on Nash manifolds and Nash sets

José F. Fernando, José Manuel Gamboa, Jesús M. Ruiz (2014)

Journal of the European Mathematical Society

Similarity:

We study here several finiteness problems concerning affine Nash manifolds M and Nash subsets X . Three main results are: (i) A Nash function on a semialgebraic subset Z of M has a Nash extension to an open semialgebraic neighborhood of Z in M , (ii) A Nash set X that has only normal crossings in M can be covered by finitely many open semialgebraic sets U equipped with Nash diffeomorphisms ( u 1 , , u m ) : U m such that U X = { u 1 u r = 0 } , (iii) Every affine Nash manifold with corners N is a closed subset of an affine Nash...

Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds

Laurent Meersseman (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of 0 in p , for some p &gt; 0 ) or differentiable (parametrized by an open neighborhood of 0 in p , for some p &gt; 0 ) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point t of the parameter space, the fiber over t of the first family is biholomorphic to the fiber over t of the second family. Then, under which conditions...

Isometric embeddings of a class of separable metric spaces into Banach spaces

Sophocles K. Mercourakis, Vassiliadis G. Vassiliadis (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( M , d ) be a bounded countable metric space and c > 0 a constant, such that d ( x , y ) + d ( y , z ) - d ( x , z ) c , for any pairwise distinct points x , y , z of M . For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of .

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.