The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A colored 𝔰𝔩(N) homology for links in S³”

Khovanov homology, its definitions and ramifications

Oleg Viro (2004)

Fundamenta Mathematicae

Similarity:

Mikhail Khovanov defined, for a diagram of an oriented classical link, a collection of groups labelled by pairs of integers. These groups were constructed as the homology groups of certain chain complexes. The Euler characteristics of these complexes are the coefficients of the Jones polynomial of the link. The original construction is overloaded with algebraic details. Most of the specialists use adaptations of it stripped off the details. The goal of this paper is to overview these...

A 2-category of chronological cobordisms and odd Khovanov homology

Krzysztof K. Putyra (2014)

Banach Center Publications

Similarity:

We create a framework for odd Khovanov homology in the spirit of Bar-Natan's construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is trivial. This allows us to create a chain complex whose homotopy type modulo certain relations is a link invariant. Both the original and...

Matrix factorizations and link homology

Mikhail Khovanov, Lev Rozansky (2008)

Fundamenta Mathematicae

Similarity:

For each positive integer n the HOMFLYPT polynomial of links specializes to a one-variable polynomial that can be recovered from the representation theory of quantum sl(n). For each such n we build a doubly-graded homology theory of links with this polynomial as the Euler characteristic. The core of our construction utilizes the theory of matrix factorizations, which provide a linear algebra description of maximal Cohen-Macaulay modules on isolated hypersurface singularities. ...

Effective homology for homotopy colimit and cofibrant replacement

Marek Filakovský (2014)

Archivum Mathematicum

Similarity:

We extend the notion of simplicial set with effective homology presented in [22] to diagrams of simplicial sets. Further, for a given finite diagram of simplicial sets X : sSet such that each simplicial set X ( i ) has effective homology, we present an algorithm computing the homotopy colimit hocolim X as a simplicial set with effective homology. We also give an algorithm computing the cofibrant replacement X cof of X as a diagram with effective homology. This is applied to computing of equivariant cohomology...

Foundations of Vietoris homology theory with applications to non-compact spaces

Robert E. Reed

Similarity:

CONTENTSPreface...................................................................................................................................... 5I. Introduction............................................................................................................................ 7II. Simple chains 2.1. Simplexes............................................................................................................ 12 2.2. Chains..............................................................................................................................

Introduction to the basics of Heegaard Floer homology

Bijan Sahamie (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

This paper provides an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. The exposition is designed to be comprehensible to people without any prior knowledge of the subject.

An infinite torus braid yields a categorified Jones-Wenzl projector

Lev Rozansky (2014)

Fundamenta Mathematicae

Similarity:

A sequence of Temperley-Lieb algebra elements corresponding to torus braids with growing twisting numbers converges to the Jones-Wenzl projector. We show that a sequence of categorification complexes of these braids also has a limit which may serve as a categorification of the Jones-Wenzl projector.

A colored Khovanov bicomplex

Noboru Ito (2014)

Banach Center Publications

Similarity:

In this note, we prove the existence of a tri-graded Khovanov-type bicomplex (Theorem 1.2). The graded Euler characteristic of the total complex associated with this bicomplex is the colored Jones polynomial of a link. The first grading of the bicomplex is a homological one derived from cabling of the link (i.e., replacing a strand of the link by several parallel strands); the second grading is related to the homological grading of ordinary Khovanov homology; finally, the third grading...

Khovanov-Rozansky homology for embedded graphs

Emmanuel Wagner (2011)

Fundamenta Mathematicae

Similarity:

For any positive integer n, Khovanov and Rozansky constructed a bigraded link homology from which you can recover the 𝔰𝔩ₙ link polynomial invariants. We generalize the Khovanov-Rozansky construction in the case of finite 4-valent graphs embedded in a ball B³ ⊂ ℝ³. More precisely, we prove that the homology associated to a diagram of a 4-valent graph embedded in B³ ⊂ ℝ³ is invariant under the graph moves introduced by Kauffman.

On a homology of algebras with unit

Jacek Dębecki (2014)

Annales Polonici Mathematici

Similarity:

We present a very general construction of a chain complex for an arbitrary (even non-associative and non-commutative) algebra with unit and with any topology over a field with a suitable topology. We prove that for the algebra of smooth functions on a smooth manifold with the weak topology the homology vector spaces of this chain complex coincide with the classical singular homology groups of the manifold with real coefficients. We also show that for an associative and commutative algebra...