A Lie product type formula in Euclidean Jordan algebras
Jiyuan Tao (2016)
Special Matrices
Similarity:
In this paper,we state and prove an analog of Lie product formula in the setting of Euclidean Jordan algebras.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Jiyuan Tao (2016)
Special Matrices
Similarity:
In this paper,we state and prove an analog of Lie product formula in the setting of Euclidean Jordan algebras.
A. Moreno Galindo (1999)
Studia Mathematica
Similarity:
We prove that, if A is an associative algebra with two commuting involutions τ and π, if A is a τ-π-tight envelope of the Jordan Triple System T:=H(A,τ) ∩ S(A,π), and if T is nondegenerate, then every complete norm on T making the triple product continuous is equivalent to the restriction to T of an algebra norm on A.
Wolfgang Bertram (2013)
Archivum Mathematicum
Similarity:
In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers...
Consuelo Martínez, Efim Zelmanov (2001)
RACSAM
Similarity:
We construct universal associative enveloping algebras for a large class of Jordan superalgebras.
Antonio Fernández López (1988)
Collectanea Mathematica
Similarity:
Antonio Fernández López (1992)
Publicacions Matemàtiques
Similarity:
In this paper we prove that a nondegenerate Jordan algebra satisfying the descending chain condition on the principal inner ideals, also satisfies the ascending chain condition on the annihilators of the principal inner ideals. We also study annihilators in Jordan algebras without nilpotent elements and in JB-algebras.
He Yuan, Liangyun Chen (2016)
Colloquium Mathematicae
Similarity:
We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.
Fošner, Maja (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
A. Moreno Galindo (1997)
Studia Mathematica
Similarity:
For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on . This analytic determination of Jordan polynomials improves the one recently obtained in [5].
A. Moreno Galindo, A. Rodríguez Palacios (1997)
Extracta Mathematicae
Similarity: