Displaying similar documents to “Simple fractions and linear decomposition of some convolutions of measures”

A convolution property of some measures with self-similar fractal support

Denise Szecsei (2007)

Colloquium Mathematicae

Similarity:

We define a class of measures having the following properties: (1) the measures are supported on self-similar fractal subsets of the unit cube I M = [ 0 , 1 ) M , with 0 and 1 identified as necessary; (2) the measures are singular with respect to normalized Lebesgue measure m on I M ; (3) the measures have the convolution property that μ L p L p + ε for some ε = ε(p) > 0 and all p ∈ (1,∞). We will show that if (1/p,1/q) lies in the triangle with vertices (0,0), (1,1) and (1/2,1/3), then μ L p L q for any measure μ in our...

On the isotropic constant of marginals

Grigoris Paouris (2012)

Studia Mathematica

Similarity:

We show that if μ₁, ..., μₘ are log-concave subgaussian or supergaussian probability measures in n i , i ≤ m, then for every F in the Grassmannian G N , n , where N = n₁ + ⋯ + nₘ and n< N, the isotropic constant of the marginal of the product of these measures, π F ( μ μ ) , is bounded. This extends known results on bounds of the isotropic constant to a larger class of measures.

Self-affine measures that are L p -improving

Kathryn E. Hare (2015)

Colloquium Mathematicae

Similarity:

A measure is called L p -improving if it acts by convolution as a bounded operator from L q to L² for some q < 2. Interesting examples include Riesz product measures, Cantor measures and certain measures on curves. We show that equicontractive, self-similar measures are L p -improving if and only if they satisfy a suitable linear independence property. Certain self-affine measures are also seen to be L p -improving.

Limit theorems for random fields

Nguyen van Thu

Similarity:

CONTENTSIntroduction............................................................................................................................................................................ 51. Notation and preliminaries............................................................................................................................................ 52. Statement of the problem..................................................................................................................................................

Continuous linear functionals on the space of Borel vector measures

Pola Siwek (2008)

Annales Polonici Mathematici

Similarity:

We study properties of the space ℳ of Borel vector measures on a compact metric space X, taking values in a Banach space E. The space ℳ is equipped with the Fortet-Mourier norm | | · | | and the semivariation norm ||·||(X). The integral introduced by K. Baron and A. Lasota plays the most important role in the paper. Investigating its properties one can prove that in most cases the space ( , | | · | | ) * is contained in but not equal to the space (ℳ,||·||(X))*. We obtain a representation of the continuous functionals...

A unified Lorenz-type approach to divergence and dependence

Teresa Kowalczyk

Similarity:

AbstractThe paper deals with function-valued and numerical measures of absolute and directed divergence of one probability measure from another. In case of absolute divergence, some new results are added to the known ones to form a unified structure. In case of directed divergence, new concepts are introduced and investigated. It is shown that the notions of absolute and directed divergences complement each other and provide a good insight into the extent and the type of discrepancy...

On Ordinary and Standard Lebesgue Measures on

Gogi Pantsulaia (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

New concepts of Lebesgue measure on are proposed and some of their realizations in the ZFC theory are given. Also, it is shown that Baker’s both measures [1], [2], Mankiewicz and Preiss-Tišer generators [6] and the measure of [4] are not α-standard Lebesgue measures on for α = (1,1,...).

Integral representation and relaxation for functionals defined on measures

Ennio De Giorgi, Luigi Ambrosio, Giuseppe Buttazzo (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Given a separable metric locally compact space Ω , and a positive finite non-atomic measure λ on Ω , we study the integral representation on the space of measures with bounded variation Ω of the lower semicontinuous envelope of the functional F ( u ) = Ω f ( x , u ) 𝑑 λ    u L 1 ( Ω , λ , n ) with respect to the weak convergence of measures.

L p -improving properties of measures of positive energy dimension

Kathryn E. Hare, Maria Roginskaya (2005)

Colloquium Mathematicae

Similarity:

A measure is called L p -improving if it acts by convolution as a bounded operator from L p to L q for some q > p. Positive measures which are L p -improving are known to have positive Hausdorff dimension. We extend this result to complex L p -improving measures and show that even their energy dimension is positive. Measures of positive energy dimension are seen to be the Lipschitz measures and are characterized in terms of their improving behaviour on a subset of L p -functions.

Integral representation and relaxation for Junctionals defined on measures

Ennio De Giorgi, Luigi Ambrosio, Giuseppe Buttazzo (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Given a separable metric locally compact space Ω , and a positive finite non-atomic measure λ on Ω , we study the integral representation on the space of measures with bounded variation Ω of the lower semicontinuous envelope of the functional F ( u ) = Ω f ( x , y ) d λ    u L 1 ( Ω , λ , n ) with respect to the weak convergence of measures.

Weak compactness in the space of operator valued measures M b a ( Σ , ( X , Y ) ) and its applications

N.U. Ahmed (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this note we present necessary and sufficient conditions characterizing conditionally weakly compact sets in the space of (bounded linear) operator valued measures M b a ( Σ , ( X , Y ) ) . This generalizes a recent result of the author characterizing conditionally weakly compact subsets of the space of nuclear operator valued measures M b a ( Σ , ( X , Y ) ) . This result has interesting applications in optimization and control theory as illustrated by several examples.

Sets of β -expansions and the Hausdorff measure of slices through fractals

Tom Kempton (2016)

Journal of the European Mathematical Society

Similarity:

We study natural measures on sets of β -expansions and on slices through self similar sets. In the setting of β -expansions, these allow us to better understand the measure of maximal entropy for the random β -transformation and to reinterpret a result of Lindenstrauss, Peres and Schlag in terms of equidistribution. Each of these applications is relevant to the study of Bernoulli convolutions. In the fractal setting this allows us to understand how to disintegrate Hausdorff measure by slicing,...

Osgood type conditions for an m th-order differential equation

Stanisaw Szufla (1998)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We present a new theorem on the differential inequality u ( m ) w ( u ) . Next, we apply this result to obtain existence theorems for the equation x ( m ) = f ( t , x ) .

Level by level equivalence and the number of normal measures over P κ ( λ )

Arthur W. Apter (2007)

Fundamenta Mathematicae

Similarity:

We construct two models for the level by level equivalence between strong compactness and supercompactness in which if κ is λ supercompact and λ ≥ κ is regular, we are able to determine exactly the number of normal measures P κ ( λ ) carries. In the first of these models, P κ ( λ ) carries 2 2 [ λ ] < κ many normal measures, the maximal number. In the second of these models, P κ ( λ ) carries 2 2 [ λ ] < κ many normal measures, except if κ is a measurable cardinal which is not a limit of measurable cardinals. In this case, κ (and...

Denseness and Borel complexity of some sets of vector measures

Zbigniew Lipecki (2004)

Studia Mathematica

Similarity:

Let ν be a positive measure on a σ-algebra Σ of subsets of some set and let X be a Banach space. Denote by ca(Σ,X) the Banach space of X-valued measures on Σ, equipped with the uniform norm, and by ca(Σ,ν,X) its closed subspace consisting of those measures which vanish at every ν-null set. We are concerned with the subsets ν ( X ) and ν ( X ) of ca(Σ,X) defined by the conditions |φ| = ν and |φ| ≥ ν, respectively, where |φ| stands for the variation of φ ∈ ca(Σ,X). We establish necessary and sufficient...

On inhomogeneous self-similar measures and their L q spectra

Przemysław Liszka (2013)

Annales Polonici Mathematici

Similarity:

Let S i : d d for i = 1,..., N be contracting similarities, let ( p , . . . , p N , p ) be a probability vector and let ν be a probability measure on d with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on d such that μ = i = 1 N p i μ S i - 1 + p ν . We give satisfactory estimates for the lower and upper bounds of the L q spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular,...

L p - L q estimates for some convolution operators with singular measures on the Heisenberg group

T. Godoy, P. Rocha (2013)

Colloquium Mathematicae

Similarity:

We consider the Heisenberg group ℍⁿ = ℂⁿ × ℝ. Let ν be the Borel measure on ℍⁿ defined by ν ( E ) = χ E ( w , φ ( w ) ) η ( w ) d w , where φ ( w ) = j = 1 n a j | w j | ² , w = (w₁,...,wₙ) ∈ ℂⁿ, a j , and η(w) = η₀(|w|²) with η C c ( ) . We characterize the set of pairs (p,q) such that the convolution operator with ν is L p ( ) - L q ( ) bounded. We also obtain L p -improving properties of measures supported on the graph of the function φ ( w ) = | w | 2 m .

On the duality between p -modulus and probability measures

Luigi Ambrosio, Simone Di Marino, Giuseppe Savaré (2015)

Journal of the European Mathematical Society

Similarity:

Motivated by recent developments on calculus in metric measure spaces ( X , d , m ) , we prove a general duality principle between Fuglede’s notion [15] of p -modulus for families of finite Borel measures in ( X , d ) and probability measures with barycenter in L q ( X , m ) , with q dual exponent of p ( 1 , ) . We apply this general duality principle to study null sets for families of parametric and non-parametric curves in X . In the final part of the paper we provide a new proof, independent of optimal transportation, of the...

The type set for homogeneous singular measures on ℝ ³ of polynomial type

E. Ferreyra, T. Godoy (2006)

Colloquium Mathematicae

Similarity:

Let φ:ℝ ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let μ be the Borel measure on ℝ ³ defined by μ ( E ) = D χ E ( x , φ ( x ) ) d x with D = x ∈ ℝ ²:|x| ≤ 1 and let T μ be the convolution operator with the measure μ. Let φ = φ e φ e be the decomposition of φ into irreducible factors. We show that if e i m / 2 for each φ i of degree 1, then the type set E μ : = ( 1 / p , 1 / q ) [ 0 , 1 ] × [ 0 , 1 ] : | | T μ | | p , q < can be explicitly described as a closed polygonal region.

Estimates of capacity of self-similar measures

Jozef Myjak, Tomasz Szarek (2002)

Annales Polonici Mathematici

Similarity:

We give lower and upper estimates of the capacity of self-similar measures generated by iterated function systems ( S i , p i ) : i = 1 , . . . , N where S i are bi-lipschitzean transformations.

Boundary value problem for an infinite system of second order differential equations in p spaces

Ishfaq Ahmad Malik, Tanweer Jalal (2020)

Mathematica Bohemica

Similarity:

The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in p space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo’s type fixed point theorem. The result is illustrated with help of an example.

Wasserstein metric and subordination

Philippe Clément, Wolfgang Desch (2008)

Studia Mathematica

Similarity:

Let ( X , d X ) , ( Ω , d Ω ) be complete separable metric spaces. Denote by (X) the space of probability measures on X, by W p the p-Wasserstein metric with some p ∈ [1,∞), and by p ( X ) the space of probability measures on X with finite Wasserstein distance from any point measure. Let f : Ω p ( X ) , ω f ω , be a Borel map such that f is a contraction from ( Ω , d Ω ) into ( p ( X ) , W p ) . Let ν₁,ν₂ be probability measures on Ω with W p ( ν , ν ) finite. On X we consider the subordinated measures μ i = Ω f ω d ν i ( ω ) . Then W p ( μ , μ ) W p ( ν , ν ) . As an application we show that the solution measures ϱ α ( t ) ...

On NIP and invariant measures

Ehud Hrushovski, Anand Pillay (2011)

Journal of the European Mathematical Society

Similarity:

We study forking, Lascar strong types, Keisler measures and definable groups, under an assumption of NIP (not the independence property), continuing aspects of the paper [16]. Among key results are (i) if p = tp ( b / A ) does not fork over A then the Lascar strong type of b over A coincides with the compact strong type of b over A and any global nonforking extension of p is Borel definable over bdd ( A ) , (ii) analogous statements for Keisler measures and definable groups, including the fact that G 000 = G 00 for G ...

Maximal function and Carleson measures in the theory of Békollé-Bonami weights

Carnot D. Kenfack, Benoît F. Sehba (2016)

Colloquium Mathematicae

Similarity:

Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that | M ω f ( z ) | q d μ ( z ) C ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p and μ ( z : M f ( z ) > λ ) C / ( λ q ) ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p , where M ω is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.

Finitely-additive, countably-additive and internal probability measures

Haosui Duanmu, William Weiss (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We discuss two ways to construct standard probability measures, called push-down measures, from internal probability measures. We show that the Wasserstein distance between an internal probability measure and its push-down measure is infinitesimal. As an application to standard probability theory, we show that every finitely-additive Borel probability measure P on a separable metric space is a limit of a sequence of countably-additive Borel probability measures { P n } n in the sense that f d P = lim n f d P n ...